Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nguyễn Lê Phước Thịnh20GP
- Phạm Thị Diệu Huyền16GP
- Vũ Minh Tuấn15GP
- Phạm Lan Hương13GP
- Trần Thanh Phương10GP
- Trên con đường thành công không có dấu chân của kẻ lười biếng8GP
- Phạm Minh Quang7GP
- Chiyuki Fujito6GP
- hellokoko6GP
- Nguyễn Ngọc Lộc
Xin lỗi bạn, mình mới học lớp 7 thôi!!
Lời giải:
Câu 2:
Ta có: \(\left\{\begin{matrix} (a+1)x+y=4(1)\\ ax+y=2a(2)\end{matrix}\right.\)
Lấy \((1)-(2)\Rightarrow x=4-2a\)
\(\Rightarrow y=2a-ax=2a-a(4-2a)=2a^2-2a\)
Ta thấy ứng với mỗi giá trị của $a$ ta thu được một giá trị tương ứng duy nhất của \((x,y)=(4-2a, 2a^2-2a)\)
nên hệ luôn có nghiệm duy nhất.
Có: \(x+y=4-2a+2a^2-2a=2a^2-4a+4=2(a-1)^2+2\)
Ta thấy \((a-1)^2\geq 0\forall a\in\mathbb{R}\Rightarrow x+y=2(a-1)^2+2\geq 2\)
Ta có đpcm.
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
Trừ vế cho vế:
\(\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\mx+y=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m-1\\y=m+1-mx\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=m-1\\y=-m^2+2m+1\end{matrix}\right.\)
\(\Rightarrow2x+y=2\left(m-1\right)-m^2+2m+1=-\left(m-2\right)^2+3\le3\) (đpcm)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x=ay+a\\ ax+y=1\end{matrix}\right.\)
\(\Rightarrow a(ay+a)+y=1\)
\(\Leftrightarrow y(a^2+1)=1-a^2(*)\)
Ta thấy $a^2+1\neq 0$ với mọi $a$ nên PT $(*)$ luôn có nghiệm duy nhất $y=\frac{1-a^2}{a^2+1}$
$\Rightarrow x=ay+a=\frac{2a}{a^2+1}$
Vậy HPT luôn có nghiệm duy nhất $(x,y)=(\frac{2a}{a^2+1}; \frac{1-a^2}{a^2+1})$ với mọi $a$
b)
Để $x,y>0$ \(\Leftrightarrow \left\{\begin{matrix} \frac{2a}{a^2+1}>0\\ \frac{1-a^2}{a^1+1}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2a>0\\ 1-a^2>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a>0\\ 1> a>-1\end{matrix}\right.\Leftrightarrow 1>a>0\)
\(\left\{{}\begin{matrix}ax+x+y=4\\ax+y=2a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ax+y+x=4\\ax+y=2a\end{matrix}\right.\)
Thế pt dưới vào pt trên ta có:
\(2a+x=4\Rightarrow x=4-2a\)
Thế vào pt dưới: \(y=2a-ax=2a-a\left(4-2a\right)=2a^2-2a\)
\(\Rightarrow\) Hệ luôn có cặp nghiệm duy nhất
Lại có \(x+y=4-2a+2a^2-2a=2a^2-4a+4\)
\(=2a^2-4a+2+2=2\left(a-1\right)^2+2\ge2\) \(\forall a\) (đpcm)