K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x=ay+a\\ ax+y=1\end{matrix}\right.\)

\(\Rightarrow a(ay+a)+y=1\)

\(\Leftrightarrow y(a^2+1)=1-a^2(*)\)

Ta thấy $a^2+1\neq 0$ với mọi $a$ nên PT $(*)$ luôn có nghiệm duy nhất $y=\frac{1-a^2}{a^2+1}$

$\Rightarrow x=ay+a=\frac{2a}{a^2+1}$

Vậy HPT luôn có nghiệm duy nhất $(x,y)=(\frac{2a}{a^2+1}; \frac{1-a^2}{a^2+1})$ với mọi $a$

b)

Để $x,y>0$ \(\Leftrightarrow \left\{\begin{matrix} \frac{2a}{a^2+1}>0\\ \frac{1-a^2}{a^1+1}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2a>0\\ 1-a^2>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a>0\\ 1> a>-1\end{matrix}\right.\Leftrightarrow 1>a>0\)

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


NV
30 tháng 5 2019

a/ Bạn tự giải

b/ Hệ tương đương:

\(\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\) \(\Rightarrow17x=m+3\Rightarrow x=\frac{m+3}{17}\)

\(\Rightarrow y=5x-1=\frac{5x+15}{17}-1=\frac{5m-2}{17}\)

\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{m+3}{17}>0\\\frac{5m-2}{17}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>\frac{2}{5}\end{matrix}\right.\) \(\Rightarrow m>\frac{2}{5}\)

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

9 tháng 3 2022

Thay vào ta được 

\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

 

9 tháng 3 2022

Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:

Nếu mình làm như này có đúng không bạn:

\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??

12 tháng 2 2020

a) Thay m = -1 ta có:

\(\left\{{}\begin{matrix}-x-y=2\\3x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=3\\x+y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{4}\\y=\frac{-11}{4}\end{matrix}\right.\)

Vậy...

b) hpt \(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+m\left(mx-2\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+xm^2-2m=5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m^2+3\right)=2m+5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{m\left(2m+5\right)}{m^2+3}-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{5m-6}{m^2+3}\end{matrix}\right.\)

\(x>0,y>0\Leftrightarrow\left\{{}\begin{matrix}2m+5>0\\5m-6>0\end{matrix}\right.\)\(\Leftrightarrow m>\frac{6}{5}\)

Vậy...

14 tháng 2 2020

Bạn có thể giải chi tiết phần a ko ạ

30 tháng 3 2020
https://i.imgur.com/aJeNGvv.jpg
30 tháng 3 2020
https://i.imgur.com/Yj5IyiZ.jpg
NV
10 tháng 4 2019

\(\left\{{}\begin{matrix}ax+x+y=4\\ax+y=2a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ax+y+x=4\\ax+y=2a\end{matrix}\right.\)

Thế pt dưới vào pt trên ta có:

\(2a+x=4\Rightarrow x=4-2a\)

Thế vào pt dưới: \(y=2a-ax=2a-a\left(4-2a\right)=2a^2-2a\)

\(\Rightarrow\) Hệ luôn có cặp nghiệm duy nhất

Lại có \(x+y=4-2a+2a^2-2a=2a^2-4a+4\)

\(=2a^2-4a+2+2=2\left(a-1\right)^2+2\ge2\) \(\forall a\) (đpcm)