Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình đường thẳng có dạng \(y=-2x+b\)
Do d qua M nên:
\(5=-2.1+b\Rightarrow b=7\)
Phương trình đường thẳng: \(y=-2x+7\Leftrightarrow2x+y-7=0\)
9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)
\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)
\(\left(d\right):x-2y-3=0\)
10/ \(\overrightarrow{BC}=\left(-6;8\right)\)
PT đường cao AA' nhận vecto BC làm vtpt
\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)
\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)
\(AA'=-6x+8y+22=0\)
18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)
Để mình chứng minh lại:
Đường thẳng có dạng : y= ax+b
\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)
Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)
Vì khoảng cách từ O đến từng điểm là như nhau
\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)
\(\overrightarrow{CA}=\left(5;-3\right)\)
\(BH\perp CA\) nên nhận \(\left(5;-3\right)\) là 1 vtpt
Phương trình BH:
\(5\left(x-4\right)-3\left(y-5\right)=0\Leftrightarrow5x-3y-5=0\)
a: BC/sinA=2R
=>2R=3/sin40
=>\(R\simeq2,33\left(cm\right)\)
b: góc B=180-40-60=80 độ
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>AC/sin80=3/sin40=AB/sin60
=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)
c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)
a: \(\overrightarrow{AB}=\left(3;-1\right)\)
PT tham số là \(\left\{{}\begin{matrix}x=-1+3t\\y=4-t\end{matrix}\right.\)
b: Đường thẳng BH sẽ nhận vecto AC làm veto pháp tuyến
và đi qua B
\(\overrightarrow{AC}=\left(1;-3\right)\)
Phương trình BH là:
1(x-2)+(-3)*(y-3)=0
=>x-2-3y+9=0
=>x-3y+7=0
\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\)
\(\Rightarrow d\left(C;AB\right)=h_a=\dfrac{2S_{ABC}}{AB}=\dfrac{3\sqrt{2}}{2}\)
Gọi M là trung điểm AB, K là chân đường vuông góc hạ từ G xuống AB \(\Rightarrow GK||CH\) (cùng vuông góc AB)
Áp dụng định lý Talet: \(\dfrac{GK}{CH}=\dfrac{GM}{CM}=\dfrac{1}{3}\) (t/c trọng tâm)
\(\Rightarrow\dfrac{d\left(G;AB\right)}{d\left(C;AB\right)}=\dfrac{1}{3}\Rightarrow d\left(G;AB\right)=\dfrac{1}{3}d\left(C;AB\right)=\dfrac{\sqrt{2}}{2}\)
Do G thuộc \(3x-y-8=0\Rightarrow\) tọa độ G có dạng \(G\left(a;3a-8\right)\)
Phương trình AB: \(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)
\(d\left(G;AB\right)=\dfrac{\left|a-\left(3a-8\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left|2a-3\right|=1\Rightarrow\left[{}\begin{matrix}a=2\Rightarrow G\left(2;-2\right)\\a=1\Rightarrow G\left(1;-5\right)\end{matrix}\right.\)
Áp dụng công thức trọng tâm: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B\\y_C=3y_G-y_A-y_B\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C\left(1;-1\right)\\C\left(-2;-10\right)\end{matrix}\right.\)
Đường cao CH đi qua C và vuông góc AB nên nhận \(\left(1;1\right)\) là vtpt
Có 2 đường thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y+1\right)=0\\1\left(x+2\right)+1\left(y+10\right)=0\end{matrix}\right.\) \(\Leftrightarrow...\)
a)\(\overrightarrow{AC}=\left(4;0\right)\Rightarrow\overrightarrow{N}_{AC}=\left(0;4\right)\)
Phương trình đường thẳng AC : \(4y-4=0\)
Phương trình đường thẳng BH vuông góc AC : \(4x+c=0\)
Thay tọa độ điểm B được : \(c=-4\)
Phương trình đường thẳng BH :\(4x-4=0\)
b) \(\overrightarrow{AB}=\left(0;3\right)\)
Gọi M,N lần lượt là trung điểm AB,AC
\(M\left(1;\frac{5}{2}\right)\)
\(N\left(3;1\right)\)
Phương trình đường thẳng đi qua M vuông góc AB hay là đường trung trực AB: \(3y-\frac{15}{2}=0\)
\(\overrightarrow{AC}=\left(4;0\right)\)
Phương trình đường trung trực AC : \(4x-12=0\)
Tâm I đường tròn ngoại tiếp tam giác là nghiệm của hệ:
\(\left\{{}\begin{matrix}3y-\frac{15}{2}=0\\4x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=\frac{5}{2}\end{matrix}\right.\)
\(\overrightarrow{IA}=\left(-2;-\frac{3}{2}\right)\)
\(IA=R\)
\(IA=\sqrt{\left(-2\right)^2+\left(\frac{-3}{2}\right)^2=\frac{5}{2}}\)
Phương trình đường tròn ngoại tiếp tam giác ABC: \(\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)