Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d/
Trung trực của BC đi qua \(M\left(\frac{3}{2};4\right)\) và vuông góc BC nên nhận \(\left(-1;2\right)\) là 1 vtpt
Phương trình trung trực BC:
\(-1\left(x-\frac{3}{2}\right)+2\left(y-4\right)=0\Leftrightarrow-x+2y-\frac{13}{2}=0\)
e/ \(\overrightarrow{AB}=\left(4;2\right)\Rightarrow AB=2\sqrt{5}\)
\(\overrightarrow{AC}=\left(3;4\right)\Rightarrow AC=5\)
Gọi D là chân đường phân giác trong góc A trên BC
Theo định lý phân giác: \(\frac{DB}{AB}=\frac{DC}{AC}\Rightarrow DB=\frac{AB}{AC}DC=\frac{2\sqrt{5}}{5}DC\)
\(\Rightarrow\overrightarrow{DB}=-\frac{2\sqrt{5}}{5}\overrightarrow{DC}\)
\(\Rightarrow\overrightarrow{DC}=\left(5-2\sqrt{5}\right)\overrightarrow{BC}=\left(-5+2\sqrt{5};10-4\sqrt{5}\right)\)
\(\Rightarrow D\left(6-2\sqrt{5};-5+4\sqrt{5}\right)\)
\(\Rightarrow\overrightarrow{AD}=\left(8-2\sqrt{5};-6+4\sqrt{5}\right)\)
Đường thẳng AD nhận \(\left(6-4\sqrt{5};8-2\sqrt{5}\right)\) là 1 vtpt
Phương trình AD:
\(\left(6-4\sqrt{5}\right)\left(x+2\right)+\left(8-2\sqrt{5}\right)\left(y-1\right)=0\)
Bạn tự rút gọn, số xấu quá
a/ \(\overrightarrow{BC}=\left(-1;2\right)\)
\(\Rightarrow\) Đường thẳng BC nhận \(\left(2;1\right)\) là 1 vtpt
Phương trình BC:
\(2\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow2x+y-7=0\)
b/ \(AH\perp BC\) nên đường thẳng AH nhận \(\left(-1;2\right)\) là 1 vtpt
Phương trình AH:
\(-1\left(x+2\right)+2\left(y-1\right)=0\Leftrightarrow-x+2y-4=0\)
c/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{3}{2};4\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};3\right)=\frac{1}{2}\left(7;6\right)\Rightarrow\) đường thẳng AM nhận \(\left(6;-7\right)\) là 1 vtpt
Phương trình AM:
\(6\left(x+2\right)-7\left(y-1\right)=0\Leftrightarrow6x+7y+19=0\)
a) Ta có = (2; -5). Gọi M(x; y) là 1 điểm nằm trên đường thẳng AB thì AM = (x - 1; y - 4). Ba điểm A, B, M thẳng hàng nên hai vec tơ và cùng phương, cho ta:
= <=> 5x + 2y -13 = 0
Đó chính là phương trình đường thẳng AB.
Tương tự ta có phương trình đường thẳng BC: x - y -4 = 0
phương trình đường thẳng CA: 2x + 5y -22 = 0
b) Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.
= (3; 3) => ⊥ nên nhận vectơ = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:
AH : 3(x - 1) + 3(y -4) = 0
3x + 3y - 15 = 0
=> x + y - 5 = 0
Gọi M là trung điểm BC ta có M \(\left(\dfrac{9}{2};\dfrac{1}{2}\right)\)
Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:
AM : x + y - 5 = 0
a)\(\overrightarrow{AC}=\left(4;0\right)\Rightarrow\overrightarrow{N}_{AC}=\left(0;4\right)\)
Phương trình đường thẳng AC : \(4y-4=0\)
Phương trình đường thẳng BH vuông góc AC : \(4x+c=0\)
Thay tọa độ điểm B được : \(c=-4\)
Phương trình đường thẳng BH :\(4x-4=0\)
b) \(\overrightarrow{AB}=\left(0;3\right)\)
Gọi M,N lần lượt là trung điểm AB,AC
\(M\left(1;\frac{5}{2}\right)\)
\(N\left(3;1\right)\)
Phương trình đường thẳng đi qua M vuông góc AB hay là đường trung trực AB: \(3y-\frac{15}{2}=0\)
\(\overrightarrow{AC}=\left(4;0\right)\)
Phương trình đường trung trực AC : \(4x-12=0\)
Tâm I đường tròn ngoại tiếp tam giác là nghiệm của hệ:
\(\left\{{}\begin{matrix}3y-\frac{15}{2}=0\\4x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=\frac{5}{2}\end{matrix}\right.\)
\(\overrightarrow{IA}=\left(-2;-\frac{3}{2}\right)\)
\(IA=R\)
\(IA=\sqrt{\left(-2\right)^2+\left(\frac{-3}{2}\right)^2=\frac{5}{2}}\)
Phương trình đường tròn ngoại tiếp tam giác ABC: \(\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
a: \(\overrightarrow{AB}=\left(3;-1\right)\)
PT tham số là \(\left\{{}\begin{matrix}x=-1+3t\\y=4-t\end{matrix}\right.\)
b: Đường thẳng BH sẽ nhận vecto AC làm veto pháp tuyến
và đi qua B
\(\overrightarrow{AC}=\left(1;-3\right)\)
Phương trình BH là:
1(x-2)+(-3)*(y-3)=0
=>x-2-3y+9=0
=>x-3y+7=0