K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 9 2019

\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)

\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)

NV
27 tháng 9 2019

\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)

\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)

27 tháng 9 2019

\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)

\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)

Dấu bằng xảy ra khi a = b.

26 tháng 12 2016

Ta thấy:

\(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)

Áp dụng BĐT AM-GM ta có:

\(P\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)

\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\)

Dấu "="xảy ra khi \(\left\{\begin{matrix}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{matrix}\right.\)\(\Rightarrow a=b=c=\frac{1}{3}\)

Vậy \(Min_P=9\) khi \(a=b=c=\frac{1}{3}\)

19 tháng 8 2019

\(A=\frac{19}{ab}+\frac{6}{a^2+b^2}+2018\left(a^4+b^4\right)\)

\(=6\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{16}{ab}+2018\left(a^4+b^4\right)\)

\(\ge\frac{24}{\left(a+b\right)^2}+\frac{64}{\left(a+b\right)^2}+\frac{2018\left(a+b\right)^4}{8}=24+64+\frac{2018}{8}=\frac{1361}{4}\)

Vậy GTNN của A là \(\frac{1361}{4}\) khi \(a=b=\frac{1}{2}\)

5 tháng 1 2017

Câu 2)

Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)

\(\Leftrightarrow9\ge4\left(ab+2\right)\)

\(\Rightarrow9\ge4ab+8\)

\(\Rightarrow1\ge4ab\)

Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )

5 tháng 1 2017

Câu 3)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

\(a+b+c=1\)

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng bất đẳng thức Cô-si

\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)

\(\Rightarrow\) ĐPCM

Ta có : \(\frac{a}{1+b^2}=\frac{a.\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\)

Mặt khác có : \(1+b^2\ge2b\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

Thiết lập tương tự với các phân thức còn lại ta có :

\(P\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)