Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$
$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$
$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$
Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực
Do đó để tổng của chúng bằng $0$ thì:
$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$
$\Leftrightarrow 2b=2c=2d=2e=a$
$\Rightarrow b=c=d=e$
Giả sử: a\(\ne\)b thì:
TH1: a > b
Ta có: Trong 2 lũy thừa bằng nhau mà có cơ số khác nhau thì lũy thừa nào có cơ số lớn hơn thì có số mũ nhỏ hơn
Từ ab = bc mà a > b => b < c
Từ bc = cd mà b < c => c > d
Từ cd = de mà c > d => d < e
Từ de = ea mà d < a => e > a
Từ ea = ab mà e > a => a < b (vô lý vì a > b)
TH2: a < b chứng minh tương tự ta cũng có ea = ab mà e < a => a > b (vô lý vì a < b)
Từ đây ta thấy giả thiết nêu ra \(a\ne b\)là sai vậy a = b
Từ ab = bc = cd = de = ea mà a = b => a = b = c = d = e
boi7y li\
X V
BD
BFD
BG
BRVEVVG
RFGV
F
F
F V
F V
GFNGBH
FHNG
TBGV
FBG V
BGFGB GFBH
VBGFHN
HV FG
HV
FGB
VBGF
G VBF
GBVF
GBG
RBG
Y
RHY
UI
IU
YY
JY
UJH
SDF
YT
H
JNBX
FE
K
B
GJ
FK
FKJH
J
ZGJH
F
V
UM
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
\(a^2-a=a.\left(a-1\right)⋮2\)
tương tự b2-b,c2-c,d2-d,e2-e
\(a^2+b^2+c^2+d^2+e^2-\left(a+b+c+d\right)⋮2\text{ mà }a^2+b^2+c^2+d^2+e^2⋮2\)
\(\Rightarrow a+b+c+d⋮2\text{ mà }a+b+c+d\ge4\Rightarrow a+b+c+d\text{ là hợp số}\)
Thay b^4=(ac)^2 và tương tự với d^4
Từ đó đặt thừa số chung và sẽ ra kết quả!
Sai chỗ nào vậy bạn? Không phải là " thỏa mãn" mà là "không thỏa mãn đúng không " ???
\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)
CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)
\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)