Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-a=a.\left(a-1\right)⋮2\)
tương tự b2-b,c2-c,d2-d,e2-e
\(a^2+b^2+c^2+d^2+e^2-\left(a+b+c+d\right)⋮2\text{ mà }a^2+b^2+c^2+d^2+e^2⋮2\)
\(\Rightarrow a+b+c+d⋮2\text{ mà }a+b+c+d\ge4\Rightarrow a+b+c+d\text{ là hợp số}\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
\(d^2=ce\Rightarrow\frac{c}{d}=\frac{d}{e}\) (3)
\(e^2=dg\Rightarrow\frac{d}{e}=\frac{e}{g}\) (4)
Từ (1),(2),(3),(4) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\)
Ta có: \(\frac{a}{b}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (5)
\(\frac{b}{c}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (6)
\(\frac{c}{d}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (7)
\(\frac{d}{e}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (8)
\(\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (9)
Nhân (5),(6),(7),(8),(9) vế với vế:
\(\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\cdot\frac{d}{e}\cdot\frac{e}{g}=\frac{a}{g}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^5\) (đpcm)
P/s: Mk nghĩ đề là c/m: a/g = (a+b+c+d+e/b+c+d+e+g)^5
Giả sử a,b,c,d khác nhau ta có
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)
=> điều giả sử là sai => ĐPCM
Giả sử a,b,c,d khác nhau, thì ta sẽ có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)
= > điều giả sử sai = > ĐPCM