Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-a=a.\left(a-1\right)⋮2\)
tương tự b2-b,c2-c,d2-d,e2-e
\(a^2+b^2+c^2+d^2+e^2-\left(a+b+c+d\right)⋮2\text{ mà }a^2+b^2+c^2+d^2+e^2⋮2\)
\(\Rightarrow a+b+c+d⋮2\text{ mà }a+b+c+d\ge4\Rightarrow a+b+c+d\text{ là hợp số}\)
Giả sử a,b,c,d khác nhau ta có
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)
=> điều giả sử là sai => ĐPCM
Giả sử a,b,c,d khác nhau, thì ta sẽ có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)
= > điều giả sử sai = > ĐPCM
Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)
Mà a , a-1 là 2 số nguyên liên tiếp
\(\Rightarrow a\left ( a-1 \right )\vdots 2\)
Theo chứng minh trên
\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)
\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)
\(\Rightarrow a+b+c+d+e\vdots 2\)
MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)
\(\Rightarrow a+b+c+d+e\) là hợp số.
Thay b^4=(ac)^2 và tương tự với d^4
Từ đó đặt thừa số chung và sẽ ra kết quả!