K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad>bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1); (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b-d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)( đpcm )

3 tháng 5 2018

Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 10 2018

Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)

<=> \(a\left(b+d\right)>b\left(a+c\right)\)

<=> \(ab+ad>bc+ba\)

<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]

<=> \(a>b\)

=> \(\frac{a}{b}>\frac{a+c}{b+d}\)

23 tháng 3 2018

Áp dụng tính chất dãy tỉ số:

a/b <c/d => a/b < c+a/d+b 

Mà a/b < c/d => a+c/b+d < c+c/d+d= 2c/2d=c/d

Vậy a/b < a+c/b+d <c/d nếu a/b<c/d

8 tháng 9 2018

Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)                                                                         ( 1 )

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)                                                             ( 2 )

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)