\(\in\) BH sao cho BK = 5cm.

a) Tính B...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

! # % Câu trl hay

6 tháng 2 2020

Vũ Minh TuấnTrần Thanh PhươngNguyễn Ngọc Lộc Nguyễn Lê Phước ThịnhPhạm Thị Diệu Huyềnbach nhac lamHoàng YếnHắc Hường ChessEvanDikAkai HarumaNguyễn Việt LâmNo choice teenLinhbuithianhthotth

10 tháng 3 2018

Mk ko bt làm!! Xin lỗi bn nhiều lắm luôn.Nhưng bn on khuya v~

12 tháng 11 2017

a/ Vì BD là tia phân giác của \(\widehat{ABC}\) nên \(\widehat{ABD}\) = \(\widehat{DBC}\)

Xét 2 tam giác ABD và HBD, có: \(\widehat{ABD}\)\(\widehat{DBC}\) (cmt) và BH=BA (gt)
=>> 2 tam giác bằng nhau (cgv-gnk)
=>> \(\widehat{BHD}\) = \(\widehat{BAD}\) = 90 độ
==>> DH vuông góc với  BC

b/ Ta có: \(\widehat{ADB}\)+\(\widehat{BDC}\) =180 độ ( vì 2 góc kề bù)
hay \(\widehat{ADB}\) + 110 = 180 => \(\widehat{ADB}\) = 70 độ
mà \(\widehat{BDH}\) = \(\widehat{ADB}\)  ( vì 2 tam giác ABD= HBD)

=>> \(\widehat{BDH}\)= 70 độ
\(\widehat{ADH}\) = \(\widehat{ADB}\) + \(\widehat{BDH}\) = 70 + 70 = 140 độ

19 tháng 5 2017

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

a) Chứng minh ΔBHC=ΔCKB

Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

BC là cạnh chung

\(\widehat{HCB}=\widehat{KBC}\)(\(\widehat{ACB}=\widehat{ABC}\), H∈AC, K∈AB)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b)

*Chứng minh IB=IC

Ta có: ΔBHC=ΔCKB(cmt)

\(\widehat{HBC}=\widehat{KCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(định lí đảo của tam giác cân)

⇒IB=IC(đpcm)

*Chứng minh \(\widehat{IBK}=\widehat{ICH}\)

Ta có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)

\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)

\(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

\(\widehat{HBC}=\widehat{KCB}\)(cmt)

nên \(\widehat{ABH}=\widehat{ACK}\)

hay \(\widehat{IBK}=\widehat{ICH}\)(đpcm)

c) Chứng minh KH//BC

Ta có: ΔBKC=ΔBHC(cmt)

⇒KB=HC(hai cạnh tương ứng)

Ta có: AK+KB=AB(A,K,B thẳng hàng)

AH+HC=AC(do A,H,C thẳng hàng)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(định nghĩa tam giác cân)

\(\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

\(\widehat{AKH}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên KH//BC(dấu hiệu nhận biết hai đường thẳng song song)

12 tháng 3 2020


A B C H K I a.Do △ABC cân ⇒∠ABC=∠ACB

Xét △BHC= △CKB (cạnh huyền-góc nhọn)

⇒∠IBC=∠ICB (2 góc tương ứng)

b. Do ∠IBC =∠ICB (câu a)

⇒△IBC cân ⇒ IB=IC

Xét △IBK=△ICH (cạnh huyền-góc nhọn)

⇒∠IBK=∠ICH (2 góc tương ứng)

c. Do △BHC=△CKB (câu a)

⇒ BH=CK (2 cạnh tương ứng)

⇒HC=KB ( 2 cạnh tương ứng)

Xét △BHK=△CKH(c.c.c)

⇒ ∠BHK=∠CKH (2 góc tương ứng)

Xét △IKH có: ∠2IHK=1800 -∠ KIH

Xét △IBC có : ∠2IBC=1800 -∠ ICB -∠BIC

Mà ∠BIC=∠KIH (2góc đối đỉnh)

⇒∠2IBC=1800-∠KIH

⇒∠IBC=∠IHK

Mà ∠IBC và ∠IHK là 2 góc so le trong

⇒KH // BC

Còn câu d thì hình như bị thiếu dữ kiện nên mik chưa làm

Chúc bn hok tốt

20 tháng 11 2020

a) Xét tam giác ABC có Góc A + góc B+ góc C = 180 độ ( định í tổng 3 góc trong một tam giác

Suy ra góc C = 40 độ

b) Xét tam giác vuông BHC có góc BAC + góc ABH = 90 độ => góc ABH = 50 độ

Xét tam giác vuông HBC có góc BCA+ góc CBH = 90 độ=> góc CAH = 50 độ

Vì góc ABH = góc CAH

nên BH là phân giác của góc ABH)

c) vì Ax song song với BH

Cy song song với BH

nên Ax vuông góc với AC, Cy vuông góc với AC

Ta có góc BCy = góc BCA + góc ACy= 40 độ + 90 độ = 130 độ

Góc xAB + góc ABC + góc BCy = 90 độ + 60 độ + 130 độ = 280 độ

20 tháng 11 2020

hình như sai rồi