Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{EBH}+\widehat{BHE}=\widehat{EBH}+\widehat{BAD}\left(=90^0\right)\)
Vì \(\widehat{EBH}\) chung => \(\widehat{BHE}=\widehat{BAD}.\)
Xét 2 \(\Delta\) vuông \(AEC\) và \(HEB\) có:
\(\widehat{AEC}=\widehat{HEB}=\left(=90^0\right)\)
AC = HB (gt)
\(\widehat{CAE}=\widehat{BHE}\left(=\widehat{DHC}\right)\)
=> \(\Delta AEC=\Delta HEB\) (cạnh huyền - góc nhọn).
=> EC = EB (2 cạnh tương ứng).
=> \(\Delta CEB\) cân tại E
mà \(\widehat{CEB}=90^0\)
=> \(\Delta CEB\) vuông cân tại E.
=> \(\widehat{EBC}\) \(\left(\widehat{B}\right)=45^0\left(đpcm\right)\)
Đây là trường hợp \(\widehat{B}\) nhọn, còn trường hợp \(\widehat{B}\) tù thì bạn làm tương tự sẽ tìm ra \(\widehat{B}=135^0\) nhé.
Chúc bạn học tốt!
Xét \(\Delta DBC\) có:
\(\widehat{ADB}\) là góc ngoài của \(\Delta BCD\)
\(\Rightarrow\widehat{ADB}=\widehat{B_2}+\widehat{C}\)
\(\Rightarrow\widehat{C}=\widehat{ADB}-\widehat{B_2}=45^o-\frac{\widehat{B}}{2}\)
Xét \(\Delta ABC\) có
\(\widehat{A_1}\) là góc ngoài tại đỉnh A
\(\Rightarrow\widehat{A_1}=\widehat{B}+\widehat{C}=\widehat{B}+45^o-\frac{\widehat{B}}{2}\)
\(\Rightarrow\widehat{A_1}=45^o+\frac{\widehat{B}}{2}\) (1)
Xét \(\Delta HAC\) vuông tại H có
\(\widehat{A_2}=90^o-\widehat{C}=90^o-\left(45^o-\frac{\widehat{B}}{2}\right)=45^o+\frac{\widehat{B}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta ABH\) có D là giao điểm của một tia phân giác ngoài với một tia phân giác trong không kề
=> tia HD phải là tia phân giác ngoài tại đỉnh H
=> \(\widehat{DHC}=45^o\)
=> HD // AB (vì có cặp góc đồng vị bằng nhau)
Xét \(\Delta ABCcó:\)
BD và CE là các đường cao (gt)
BD\(\cap CE=O\)(gt)
\(\Rightarrow Olàtrựctâm\) của \(\Delta ABC\)
\(\Rightarrow\)AO là đường cao thứ 3
Ta có :AB=AC(gt)
\(\Rightarrow\Delta ABCcântạiA\)
\(\Rightarrow\)AO đồng thời là đường phân giác của \(\Delta ACB\)
hay AO là tia phân giác của \(\widehat{BAC}\)
a)Có tam giác ABC cân tại A.
Và BD và CE là 2 đường cao giao nhau tại O.
=>O là trực tâm của tam giác ABC.
=>AO là đường cao ứng với cạnh đáy BC
=>AO đông thời là tia phân giác của \(\widehat{BAC}\) (vì tam giác ABC cân tại A)
b)+)Xét tam giác ABD và tam giác ACE, có:
\(\widehat{ADB}=\widehat{AEC}\) (=90 độ)
\(\widehat{A}\) là góc chung
AB=AC(gt)
=>tam giác ABD = tam giác ACE(cạnh huyền-góc nhọn)
=>AD=AE(2 cạnh tương ứng)
=>Tam giác ADE cân tại A
=>\(\widehat{ADE}=\widehat{\frac{DAE}{2}\left(1\right)}\)
+)Có tam giác ABC cân tại A.
=>\(\widehat{ACB}=\widehat{\frac{BAC}{2}}\left(2\right)\)
Từ (1) và (2)=>\(\widehat{ADE}=\widehat{ACB}\)
Mà 2 góc này nằm ở vị trí đồng vị.
=>ED song song với BC
Cách 1:
Kẻ \(IH\perp AB,IK\perp AC\).Ta có \(\Delta IHE=\Delta IKD\)(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\widehat{IEH}=\widehat{IDK}\) (1)
Xét 4 trường hợp :
a) H thuộc đoạn BE ,K thuộc đoạn CD ( hình a)
Từ (1) \(\Rightarrow\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\) ,do đó \(\widehat{C}=\widehat{B}\)
b) H thuộc đoạn BE,K thuộc đoạn AD.Chứng min tương tự như phần a ta được \(\widehat{C}=\widehat{B}\)
c) H thuộc đoạn AE ,K thuộc đoạn AD (hình b )
Từ (1) ta có :
\(\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\)
\(\Rightarrow\widehat{A}=\widehat{\frac{B}{2}}+\widehat{\frac{C}{2}}\)
\(\Rightarrow2\widehat{A}=\widehat{B}+\widehat{C}\)
\(\Rightarrow3\widehat{A}=\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}=60^o,\widehat{B}+\widehat{C}=120^o.\)
d) H thuộc đoạn AE,K thuộc đoạn CD.Chứng min tương tự như phần c ta được : \(\widehat{B}+\widehat{C}=120^o\).
Cách 2
Không mất tín tổng quát,giả sử \(AD\ge AE\).Xét 2 trường hợp :
a) Trường hợp AD= AE ( hình c)
\(\Delta ADI=\Delta AEI\left(c.c.c\right)\Rightarrow\widehat{ADI}=\widehat{AEI}\)
\(\Delta ADB\)và \(\Delta AEC\) có \(\widehat{A}\) chung,\(\widehat{ADI}=\widehat{AEI}\)nên \(\widehat{B}_1=\widehat{C}_1.\)
Do đó \(\widehat{B}=\widehat{C}\)
b) Trường hợp AD>AE.Lấy F trên AD sao cho À=AE (hình d)
\(\Delta AFI=\Delta AEI\left(c.g.c\right)\Rightarrow IF=IE,\widehat{F_1}=\widehat{E}_1\)
Do IE=ID nên IF =ID,do đó \(\widehat{F_1}=\widehat{D_1}\).
\(\Rightarrow\widehat{D_1}=\widehat{E_1}\),tức là \(\widehat{A}+\widehat{\frac{B}{2}}=\widehat{B}+\frac{\widehat{C}}{2}.\)
Biến đổi như cách 1,ta được \(\widehat{B}+\widehat{C}=120^o\).
P/s:Hình xấu :)