K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

đặt \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=k\)

=> a = 2015k

b = 2016k

c = 2017k

ta có:

4(a-b)(b-c) = 4(2015k-2016k)(2016k-2017k) = 4(-k)(-k) = 4k2 (1)

(c-a)2 = (2017k - 2015k)2 = (2k)2 = 4k2 (2)

từ 1 và 2 => 4(a-b)(b-c) = (c-a)2 (đpcm)

6 tháng 1 2017

Áp dụng t/c của dãy tỉ số = nhau ta có:

\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)\(=\frac{a-b}{2015-2016}=\)\(\frac{b-c}{2016-2017}=\frac{c-a}{2017-2015}\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\frac{\left(a-b\right)\left(b-c\right)}{1}=\)\(\left(\frac{c-a}{2}\right)^2=\)\(\frac{\left(c-a\right)^2}{4}\)

=> 4(a - b)(b - c) = (c - a)2

29 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{2015-2016}=\dfrac{b-c}{2016-2017}=\dfrac{c-a}{2015-2017}\\ \Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}\\\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}=k\\ \Rightarrow a-b=-k;b-c=-k ;c-a=-2k\\ 4\left(a-b\right)\left(b-c\right)=4\left(-k\right)\left(-k\right)=4k^2\\ \left(c-a\right)^2=\left(-2k\right)^2=4k^2\\ \Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(ĐPCM\right)\)

29 tháng 10 2017

dài qá =.=

14 tháng 7 2016

A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!

A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!

A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!

A = 1 - 1/2016! < 1 (đpcm)

M = 1/52 + 1/6+ 1/7+ ... + 1/1002

M > 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/100.101

M > 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/100 - 1/101

M > 1/5 - 1/101 > 1/5 - 1/30 = 1/6 = B

=> M > B (đpcm)

C = 1/20 + 1/21 + 1/22 + ... + 1/200

C > 1/200 + 1/200 + 1/200 + 1/200

       (181 phân số 1/200)

C > 1/200 . 181 = 181/200 > 180/200 = 9/10 (đpcm)

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

24 tháng 11 2017

Ta có :

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2016}{a2017}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)

vì \(\frac{a1}{a2}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\) 

\(\frac{a2}{a3}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)

...

\(\frac{a2016}{a2017}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)
\(\Rightarrow\frac{a1}{a2}.\frac{a2}{a3}.\frac{a3}{a4}...\frac{a2016}{a2017}=\frac{\left(a1+a2+a3+...+a2016\right)^{2016}}{\left(a2+a3+a4+...+a2017\right)^{2016}}\)

\(\Rightarrow\frac{a1}{a2017}=\left(\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\right)^{2016}\)

24 tháng 11 2017

Ta có a1/a2=a2/a3=a3/a4=...=a2016/a2017

=> a1/a2=(a1+a2+a3+...+a2016)

/(a2+a3+a4+...+a2017)

=> a12016/a22016 =(a1+a2+a3+...+a2016)2016 /(a2+a3+a4+...+a2017)2016 (1)

Ta lại có a1/a2=a2/a3=a3/a4=...=a2016/a2017

=> a12016/a22016= a1/a2.a2/a3.a3/a4. ... .a2016/a2017=a1/a2017 (2)

Từ (1) và (2) => đpcm

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)