K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{2015-2016}=\dfrac{b-c}{2016-2017}=\dfrac{c-a}{2015-2017}\\ \Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}\\\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}=k\\ \Rightarrow a-b=-k;b-c=-k ;c-a=-2k\\ 4\left(a-b\right)\left(b-c\right)=4\left(-k\right)\left(-k\right)=4k^2\\ \left(c-a\right)^2=\left(-2k\right)^2=4k^2\\ \Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(ĐPCM\right)\)

29 tháng 10 2017

dài qá =.=

19 tháng 12 2018

Đặt a/2016 = b/2017 = c/2018 = k => a=2016k

b=2017k

c=2018k

Ta có (a-c)^3=( 2016k-2018k)^3 = (k(2016-2018))^3 = (k(-2))^3 (1)

Ta lại có 8(a-b)^2*(b-c)= 8(2016k-2017k)^2*(2017k-2018k) = 8(k(2016-2017)^2*(k(2017-2018) = 2^3*(k(-1))^2*(k(-1)) = 2^3*k^2*1*k*(-1) = k^3*(-2)^3 = (k(-2))^3 (2)

Từ (1) và (2) suy ra (a-c0^3 = 8(a-b)^2*(b-c)

Nhớ tick mik nha hihi

19 tháng 12 2018

cảm ơn bạn nha

6 tháng 6 2017

b/ Theo đề bài thì ta có:

\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)

Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)

\(=2a_3x^3+2a_1x=0\)

Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x

6 tháng 6 2017

a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)

\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)

Thế vào B ta được

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)

\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

29 tháng 7 2017

a, Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

Ta có: \(4\left(a-b\right)\left(b-c\right)\)

\(=4\left(3k-4k\right)\left(4k-5k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\) (1)

\(\left(a-c\right)^2=\left(3k-5k\right)^2=4k^2\) (2)

Từ (1), (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)

\(\Rightarrowđpcm\)

Đặt a/2016=b/2017=c/2018=k

=>a=2016k; b=2017k; c=2018k

M=4(a-b)(b-c)(c-a)^2

=4*(2016k-2017k)(2017k-2018k)(2016k-2018k)^2

=4*(-k)*(-k)*(-2k)^2

=4k^2*4k^2=16k^4

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Ta có \(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)

\(\Rightarrow \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\( \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

\(=\frac{2015.2016c-2015.2017b+2016.2017a-2016.2015c+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)

\(\Rightarrow \left\{\begin{matrix} 2015.2016c-2015.2017b=0\\ 2016.2017a-2016.2015c=0\\ 2017.2015b-2016.2016a=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2016c=2017b\\ 2017a=2015c\\ 2015b=2016a\end{matrix}\right.\Rightarrow \frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

Ta có đpcm.

NV
14 tháng 12 2018

\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)

\(\Rightarrow a-b=b-c=-\dfrac{1}{2}\left(c-a\right)\)

\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=4\left(-\dfrac{1}{2}\left(c-a\right)\right)\left(-\dfrac{1}{2}\left(c-a\right)\right)-\left(c-a\right)^2\)

\(\Rightarrow M=\left(c-a\right)^2-\left(c-a\right)^2=0\)

14 tháng 12 2018

Cô Akai Haruma giúp em với !

Thầy phynit giúp em với !

Bạn Trần Trung Nguyên giúp mình với !

Bạn Nguyễn Việt Lâm giúp mình với !

Bạn bảo nam trần giúp mình với !

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)