Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!
A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!
A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!
A = 1 - 1/2016! < 1 (đpcm)
M = 1/52 + 1/62 + 1/72 + ... + 1/1002
M > 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/100.101
M > 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/100 - 1/101
M > 1/5 - 1/101 > 1/5 - 1/30 = 1/6 = B
=> M > B (đpcm)
C = 1/20 + 1/21 + 1/22 + ... + 1/200
C > 1/200 + 1/200 + 1/200 + 1/200
(181 phân số 1/200)
C > 1/200 . 181 = 181/200 > 180/200 = 9/10 (đpcm)
Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
Mà \(A< \frac{2015}{2016}\)
Nên A không phải là 1 số tự nhiên
a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004
B= 1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005
suy ra 2B=1-1/3^2005
suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)
suy ra B=1/2-1/3^2005/2 bé hơn 1/2
từ đấy suy ra B bé hơn 1/2