K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)

ta có: A = 5+5^2+5^3+...+5^100

vì 5 chia hết cho 5

    5^2 chia hết cho 5

    5^3 chia hết cho 5

    .......

    5^100 chia hết cho 5

    nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)

12 tháng 11 2017

a, gọi UCLN(2n+1,3n+1) là d

Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+1 chia hết cho d=> 6n+2 chia hết cho     d 

=> (6n+3)-(6n+2)=1 chia hết cho d 

=> d là ước của 1

Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau

9 tháng 11 2016

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

9 tháng 11 2016

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự. 

20 tháng 3 2020

b) Gọi d là ước chung của 4n+ 3 và 3n + 2 

Ta có : \(\hept{\begin{cases}4n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(4n+3\right)⋮d\\4.\left(3n+2\right)⋮d\end{cases}}}\)=> 3.( 4n + 3 ) - 4 . ( 3n+2 ) \(⋮d\)

                                                                                      12n + 9   - 12n+ 8    \(⋮\)d

                                                                                                         1 \(⋮\)d => d \(\inƯ\left(1\right)=\left\{1\right\}\)=> d = 1

Vì d=1 => ( 4n+3 ,3n+2) = 1 => đpcm

                                                                                   

                        

Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)

\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)

\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương

( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)

Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)

Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)

Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)

Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)

Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)

( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)

\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)

\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

2 tháng 3 2020

cho mình hỏi bài 1 phần 2 chữ đpcm là gi thế bạn

20 tháng 3 2020

a) \(M=1+5+5^2+....+5^{315}+5^{316}\)

\(\Leftrightarrow M=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{315}+3^{316}\right)\)

\(\Leftrightarrow M=6+5^2\cdot6+....+5^{315}\cdot6\)

\(\Leftrightarrow M=6\left(1+5^2+....+5^{315}\right)\)

=> M là bội của 6

b) Gọi d là ƯCLN (4n+3; 3n+2) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}4n+3⋮d\\3n+2⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(4n+3\right)⋮d\\4\left(3n+2\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)

=> 12n+9-12n-8 chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N*

=> d=1

Vậy với n là số tự nhiên thì 4n+3 và 3n+2 nguyên tố cùng nhau

17 tháng 12 2015

Goi d la uoc cua 2n+5 va 3n+7

2n+5:d =>3(2n+5):d=>6n+15:d

3n+7:d=>2(3n+7):d=>6n+14:d

6n+15-6n+14:d

=>1:d

=> hai so tren la 2.  So nguyen to cung nhau

OLM ơi giúp mình với. Bí lắm rồi nè!!!Câu 1: a. Tìm n để n2 + 2006 là một số chính phươngb. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay hợp sốCâu 2: Cho 2015 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúngCâu 3: Chứng minh rằng: 1028 + 8 chia hết cho 72Câu 4: Cho 20 điểm, trong đó có a...
Đọc tiếp

OLM ơi giúp mình với. Bí lắm rồi nè!!!

Câu 1: 

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay hợp số

Câu 2: Cho 2015 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng

Câu 3: Chứng minh rằng: 1028 + 8 chia hết cho 72

Câu 4: Cho 20 điểm, trong đó có a điểm thẳng hàng. Cứ 2 điểm, ta vẽ một đường thẳng. Tim a, biết vẽ được tất cả 170 đường thẳng

Câu 5:

a. Tìm hai chữ số tận cùng của các số sau:       2100; 71991

b. Tìm bốn chữ số tận cùng của số sau:             51992

Câu 6: Cho S = 30 + 32 + 34 + 36 +.....+32002

a. Tính S

b. Chứng minh S chia hết cho 7

Câu 7: Tìm số tự nhiên n và chữ số a biết rằng: 1 + 2 + 3 +........+ n = aaa

 

0
25 tháng 11 2018

Gọi d thuộc ƯC(3n+2, 5n+3) thì

3(5n+3) - 5(3n+2) chia hết cho d => 1chia hết cho d => d = 1

Vì ƯCLN(3n+2, 5n+3)=1 nên hai số 3n+2 và 5n+3 là hai số nguyên tố cung nhau

25 tháng 11 2018

k cho mik nha