K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Gọi d thuộc ƯC(3n+2, 5n+3) thì

3(5n+3) - 5(3n+2) chia hết cho d => 1chia hết cho d => d = 1

Vì ƯCLN(3n+2, 5n+3)=1 nên hai số 3n+2 và 5n+3 là hai số nguyên tố cung nhau

25 tháng 11 2018

k cho mik nha

17 tháng 1 2016

ta có : x2-2x+3=(x2-2x+1)+2

                      =(x-1)2+2

Vì (x-1)2 chia hét cho x-1 

=> x-1 \(\varepsilon\)Ư(2)

Mà Ư(2)={-2;-1;1;2}

TA có bảng sau:

     x-1                -2                     -1                       1                      2


     x                   -1                      0                      2                      3

Vậy x \(\varepsilon\){-1;0;2;3}

12 tháng 11 2017

mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)

ta có: A = 5+5^2+5^3+...+5^100

vì 5 chia hết cho 5

    5^2 chia hết cho 5

    5^3 chia hết cho 5

    .......

    5^100 chia hết cho 5

    nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)

12 tháng 11 2017

a, gọi UCLN(2n+1,3n+1) là d

Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+1 chia hết cho d=> 6n+2 chia hết cho     d 

=> (6n+3)-(6n+2)=1 chia hết cho d 

=> d là ước của 1

Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau

30 tháng 10 2016

bạn chờ mình chút

30 tháng 10 2016

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha

9 tháng 11 2016

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

9 tháng 11 2016

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự. 

13 tháng 11 2017

Giả sử:

d=(3n+1).(5n+2)

<=>3n+1 chia hết cho d và 5n+2 chia hết cho d

<=>5(3n+1) - 3(5n+2) chia hết cho d

<=>(15n+5)-(15n+6) chia hết cho d

<=>15n+5-15n-6 chia hết cho d

<=>-1 chia hết cho d

<=>d=1 hoặc -1

Vậy 3n+1 và 5n+2 là hai số nguyên tố cùng nhau

25 tháng 12 2015

Gọi UCLN(3n + 1; 5n +2 ) = d, ta có

3n + 1 chia hết cho d và 5n + 2 chia hết cho d

=> 3( 5n + 2 ) - 5 ( 3n + 1 ) chia hết cho d

=>(15n + 6)  -  ( 15n + 5 ) chia hết cho d => 1 chia hết cho d

=> d E Ư(1) = { 1 }

=> d = 1

29 tháng 12 2024

Gọi ƯCLN(3n + 1; 5n +2 ) = d, ta có

3n + 1 chia hết cho d và 5n + 2 chia hết cho d

=> 3( 5n + 2 ) - 5 ( 3n + 1 ) chia hết cho d

=>(15n + 6)  -  ( 15n + 5 ) chia hết cho d => 1 chia hết cho d

=> d E Ư(1) = { 1 }

=> d = 1

20 tháng 10 2015

1.1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225 
<=> (2n.2n):4 = 225 
<=> n2=225 
=> n = 15 và n = -15 
Vì n thuộc N* nên n = 15 thỏa mãn

20 tháng 10 2015

Giải: 
1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225 
<=> (2n.2n):4 = 225 
<=> n^2=225 
suy ra n = 15 và n = -15 
do n thuộc N* nên n = 15 thỏa mãn

gọi d > 0 là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1 => d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

tích nha

21 tháng 11 2015

Đặt UCLN(n2 +3n + 1 , n + 1)= d

n + 1 chia hết cho d => n(n + 1) chia hết cho d

=>N 2 + n chia hết cho d 

=> (n2 + 3n + 1 - n2 - n) chia hết cho d

=> 2n + 1 chia hết cho d

n + 1 chia hết cho d => 2(N  + 1) chia hết cho d => 2n + 2 chia hết cho d

Mà UCLN(2n + 1 ; 2n + 2) = 1

Vậy n2 + 3n  + 1 và n +  1 là 2 số nguyên tố cùng nhau