K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{99}{100}\)

        Vì \(\frac{99}{100}-2=-\frac{101}{100}\) là số âm

Nên \(\frac{99}{100}< 2\).Vậy ta được đpcm

25 tháng 5 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1< 2\)

25 tháng 5 2017

Bài làm

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Mà \(\frac{49}{50}\)lại nhỏ hơn 1 nên \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\left(ĐPCM\right)\)

P/S : Các bạn thấy mình làm đúng không ? Nếu sau thì ibox cho mình nhé 

25 tháng 5 2017

Đặt dãy số đó là A ta có :

A = 1/1.2 + 1/2.3 + 1/3.4 + ... +1/49.50

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/48 - 1/49 + 1/49 - 1/50

A = 1 - 1/50 Vì 1 - 1/50 < 1

⇒ A  < 1

18 tháng 8 2019

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \frac{9}{10}\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ 90-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=1\\ \frac{5}{2}:\left(X+\frac{206}{100}\right)=\frac{1}{2}\\ X+\frac{206}{100}=5\\ X=\frac{500}{100}-\frac{206}{100}\\ X=\frac{294}{100}=\frac{147}{50}\)

Vậy \(X=\frac{147}{50}\)

18 tháng 8 2019

( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ......+ 1/9 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89 . 1/2

( 1 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89/2

90 - 5/2 : ( x + 103/50 ) = 89/2

5/2 : ( x + 103/50 ) = 90 - 89/2

5/2 : ( x + 103/50 ) = 91/2

x + 103/50 = 5/2 : 91/2

x + 103/50 = 5/91

x = 5/91 - 103/50

x = -9,123/4550

25 tháng 5 2017

\(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+...+\frac{1}{100.101}< \frac{1}{4}\)

Đặt A = \(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+....+\frac{1}{100.101}\)

A = \(\frac{1}{38}-\frac{1}{39}+\frac{1}{40}-\frac{1}{41}+.....+\frac{1}{100}-\frac{1}{101}\)

A = \(\frac{1}{38}-\frac{1}{101}\)

A = \(\frac{63}{3838}\)

Ta thấy \(\frac{63}{3838}< \frac{1}{4}\Rightarrow A< \frac{1}{4}\)

25 tháng 5 2017

Lập luận: 1/38.39 = 1/38 - 1/39

1/40.41 = 1/40 - 1/41

1/42. 43 = 1/42 - 1/43

....

1/100.101 = 1/100 - 1/101

Gọi phép tính trên là A. Ta có:

1/38 - 1/39 + 1/40 - 1/41 + 1/42 - 1/43 + ...+ 1/100 - 1/101

= 1/38 - 1/101 , vì 1/38 - 1/101 < 1/4 nên phép tính trên bé hơn 1/4. (nếu cần kĩ hơn thì làm ra kết quả rồi so sánh luôn)

5 tháng 1 2017

Bài 2:

a)Gọi \(UCLN\left(12n+1;30n+2\right)=d\)

Ta có:

\(\left[5\left(12n+1\right)\right]-\left[2\left(30n+2\right)\right]⋮d\)

\(\Rightarrow\left[60n+5\right]-\left[60n+4\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Suy ra \(\frac{12n+1}{30n+2}\) là phân số tối giản

b)Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Ta có: \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< \)\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\left(1\right)\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\left(2\right)\)

Từ (1) và (2) suy ra \(B< A< 1\Rightarrow B< 1\)

Vậy ta có điều phải chứng minh

5 tháng 1 2017

Cảm ơn bạn!

1 tháng 5 2017

B1: Tính nhanh:

\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{1}{10}\cdot\dfrac{-9}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)

\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{-9}{10}\cdot\dfrac{1}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)

\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{1}{2}+\dfrac{1}{7}\right)\)

\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{7}{14}+\dfrac{2}{14}\right)\)

\(E=\dfrac{-9}{10}\cdot1=\dfrac{-9}{10}\)

B2: Chứng tỏ rằng:

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)

Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow1-\dfrac{1}{100}=\dfrac{99}{100}\)

\(\dfrac{99}{100}< 1\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)

Tick mình nha!hihi

8 tháng 8 2016

a)

\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{50.51}\)

\(\Rightarrow A>\frac{1}{3^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{51}=\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)

Dễ thấy 1/9 > 1/51

=> 1/9 - 1/51 > 0

\(\Rightarrow a>\frac{1}{4}+\frac{1}{9}-\frac{1}{51}>\frac{1}{4}\)

=> A>1/4

 

8 tháng 8 2016

Cảm ơn nah

13 tháng 7 2020

bài 1 tắt quá

13 tháng 7 2020

Câu 1:

Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)

\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)

\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy:.............

Câu 2:

\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)

\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)

\(=\frac{100}{2}=50\)

10 tháng 8 2020

làm thế nào cx đc hết!

10 tháng 8 2020

cậu có thể làm một nửa rồi mai làm tiếp vẫn đc!?