K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

a)Ta có:

\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)

\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)

Vậy MaxA=-3 khi x=1

b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2

Sai rồi bạn

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)

13 tháng 10 2016

a)\(A=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu = khi \(x=2\)

Vậy MaxA=7 khi \(x=2\)

b)\(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu = khi \(x=\frac{1}{2}\)

Vậy MaxB=\(\frac{1}{4}\)khi \(x=\frac{1}{2}\)

 

 

 

 

13 tháng 10 2016

\(A=4x-x^2+3=7-x^2+4x-4=7-\left(x-2\right)^2\le7\)

\(MaxA=7\Leftrightarrow x=2\)

\(B=x-x^2=\frac{5}{4}-x^2+x-\frac{1}{4}=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\)

\(MaxB=\frac{5}{4}\Leftrightarrow x=\frac{1}{2}\)

\(N=2x-2x^2-5=-\frac{9}{2}-2x^2+2x-\frac{1}{2}=-\frac{9}{2}-2\left(x-\frac{1}{4}\right)^2\le-\frac{9}{2}\)

\(MaxN=-\frac{9}{2}\Leftrightarrow x=\frac{1}{4}\)

3 tháng 1 2019

a) ta có: \(A=4x-4x^2=-\left(4x^2-4x\right)=-\left(4x^2-4x+1-1\right)=-\left(2x-1\right)^2+1.\)\(\le1\)

Để A có GTLN

=> - (2x-1)2 + 1 = 1

=> - (2x-1)2 = 0 => x = 1/2

KL: Max A = 1 tại x = 1/2

b)Max B = 3/2 tại x = 5/2

c) ta có: \(C=\frac{5}{x^2-3x+4}=\frac{5}{\left(x-\frac{3}{2}\right)^2+\frac{5}{2}}\le2\)

...

bn tự làm tiếp nha

17 tháng 9 2019

ghi đề hẳn hoi coi

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

31 tháng 7 2019

\(a,A=4x-x^2+3\)

       \(=-\left(x^2-4x+4\right)+7\)

       \(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\) 

Vậy......

\(b,B=4-x^2+2x\)

      \(=-\left(x^2-2x+1\right)+5\)

      \(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy......

31 tháng 7 2019

B2:

a) ta có: \(a^2+b^2-2ab\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)

\(\Rightarrowđpcm\)

b) Ta có: \(a^2+b^2\ge-2ab\)

     \(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)

   \(\Rightarrowđpcm\)

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

23 tháng 6 2017

a, \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)=-\left(x^2-x-x+1-5\right)\)

\(=-\left[\left(x-1\right)^2-5\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-5\ge-5\)

\(\Rightarrow-\left[\left(x-1\right)^2-5\right]\ge5\)

với mọi giá trị của \(x\in R\).

Để \(-\left[\left(x-1\right)^2-5\right]=5\) thì \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy............

b, \(4x-x^2+3\)

\(=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-7\ge-7\)

\(\Rightarrow-\left[\left(x-2\right)^2-7\right]\ge7\) với mọi giá trị của \(x\in R\).

Để \(-\left[\left(x-2\right)^2-7\right]=7\) thì \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy.............

Chúc bạn học tốt!!!

23 tháng 6 2017

b,\(4x-x^2+3\)

Đặt C=\(4x-x^2+3\)

=-(\(x^2-4x-3\))

=\(-\left(x^2-4x+4-7\right)\)

=\(-\left(x^2-4x+4\right)+7\)

=\(-\left(x-2\right)^2+7\le7\)

Dấu "= "xảy ra \(\Leftrightarrow\)x=2

Vậy MaxB=7\(\Leftrightarrow\)x=2