Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) với mọi x
=> (x-1)^2 +4 \(\ge\) vợi mọi x
Pmin=4 <=> x-1=0 <=>x=1
1.
b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)
\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)
Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)
\(a,4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)Vậy Max A= 7 khi (x-2)2=0 \(\Rightarrow x=2\)
\(B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy Max B=\(\dfrac{1}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
\(N=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}\)Vậy Max N = \(\dfrac{-39}{8}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Bài 1 :
b, Ta có : \(4x^2-25-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
c, Ta có : \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=x\left(x+3\right)\left(x-2\right)\)
Bài 2 :
a, Để \(x^3+3x^2+3x-2⋮x+1\)
<=> \(x^3+1+3x^2+3x-3⋮x+1\)
<=> \(\left(x+1\right)^3-3⋮x+1\)
Ta thấy : \(\left(x+1\right)^3⋮x+1\)
<=> \(-3⋮x+1\)
<=> \(x+1\inƯ_{\left(3\right)}\)
<=> \(x+1=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{0,-2,2,-4\right\}\)
Vậy ...
b, Để \(2x^2+x-7⋮x-2\)
<=> \(2x^2-8x+8+9x-15⋮x-2\)
<=> \(2\left(x-2\right)^2+9x-15⋮x-2\)
Ta thấy : \(2\left(x-2\right)^2⋮x-2\)
<=> \(9x-15⋮x-2\)
<=> \(9x-18+3⋮x-2\)
Ta thấy : \(8\left(x-2\right)⋮x-2\)
<=> \(3⋮x-2\)
<=> \(x-2\inƯ_{\left(3\right)}\)
<=> \(x-2=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{3,1,5,-1\right\}\)
Vậy ...
Bài 1:
a,\(P=x^2-2x+5=x^2-x-x+1+4=\left(x-1\right)^2+4\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
hay \(P\ge4\) với mọi giá trị của \(x\in R\).
Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Vậy..............
b, Tương tự a.
c, \(M=x^2+y^2-x+6y+10\)
\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(M=\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}\right)+\left(y^2+3y+3y+9\right)+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).
Để \(M=\dfrac{3}{4}\)thì
\(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy......................
Bài 2:
a, \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-7\ge-7\)
\(\Rightarrow-\left[\left(x-2\right)^2-7\right]\le7\)
hay \(A\le7\) với mọi giá trị của \(x\in R\).
Để \(A=7\)thì \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy..................
b,c làm tương tự!
Chúc bạn học tốt!!!
a) \(A=-x^2+4x+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\ge7\)
Dấu "=" xảy ra khi và chỉ khi x = 2
Vậy Max A = 7 <=> x = 2
b) \(B=-x^2+x=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
Vậy Max B = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
c) \(C=-2x^2+2x-5=-2\left(x^2-x\right)-5=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
Vậy Max C = \(-\frac{9}{2}\Leftrightarrow x=\frac{1}{2}\)
\(a,A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\) Vậy \(Max_A=7\) khi \(x-2=0\Rightarrow x=2\)
\(b,x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy \(Max_B=\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(c,2x-2x^2+5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-\left(x-\dfrac{1}{2}\right)-\dfrac{9}{2}\le\dfrac{-9}{2}\)Vậy \(Max_C=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)
Bài 1:
\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\Rightarrowđpcm\)Bài 2:
\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)Với mọi giá trị của x ta có:
\(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của A là \(\dfrac{11}{4}\)
Để \(A=\dfrac{11}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5=5\left(x^2+1\right)\)
Với mọi giá trị của x ta có:
\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow5\left(x^2+1\right)\ge5\)
Vậy \(Min_B=5\)
Để B = 5 thì \(x^2=0\Rightarrow x=0\)
Bài 3:
\(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+5\le5\)Vậy \(Max_A=5\)
Để A = 5 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\)
Với mọi giá trị của x ta có :
\(\left(2-x\right)^2\ge0\Rightarrow4-\left(2-x\right)^2\le4\)
Vậy \(Max_B=4\)
Để B = 4 thì \(2-x=0\Rightarrow x=2\)
Bài 1: CMR các biểu thức sau luôn dương với mọi giá trị của biểu thức
\(2x^2+2x+1\)
Ta có: \(2x^2>2x\forall x\) mà \(2x^2\ge0\)
\(\Rightarrow2x^2-2x\ge0\)
Vậy \(2x^2+2x+1\ge1\) (đpcm)
a)\(A=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu = khi \(x=2\)
Vậy MaxA=7 khi \(x=2\)
b)\(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu = khi \(x=\frac{1}{2}\)
Vậy MaxB=\(\frac{1}{4}\)khi \(x=\frac{1}{2}\)
\(A=4x-x^2+3=7-x^2+4x-4=7-\left(x-2\right)^2\le7\)
\(MaxA=7\Leftrightarrow x=2\)
\(B=x-x^2=\frac{5}{4}-x^2+x-\frac{1}{4}=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\)
\(MaxB=\frac{5}{4}\Leftrightarrow x=\frac{1}{2}\)
\(N=2x-2x^2-5=-\frac{9}{2}-2x^2+2x-\frac{1}{2}=-\frac{9}{2}-2\left(x-\frac{1}{4}\right)^2\le-\frac{9}{2}\)
\(MaxN=-\frac{9}{2}\Leftrightarrow x=\frac{1}{4}\)