Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x - 1 )2 \(\ge\)0
\(|2y+2|\)\(\ge0\)
\(\Rightarrow\left(x-1\right)^2+|2y+2|\ge0\)
\(\Rightarrow\left(x-1\right)^2+|2y+2|-3\ge-3\)
\(Min_A=-3\)
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
a)Để A đạt GTNN \(\Rightarrow\)\(^{\left(x-2\right)^2}\) là số tự nhiên nhỏ nhất
\(\Rightarrow\)\(\left(x-2\right)^2\) =0
\(\Rightarrow\) x-2=0
\(\Rightarrow\) x=2
Khi đó: A=(2-2)^2+=3
Vậy A đạt GTNN là 3 tại x=2
b)Để B đạt GTNN, suy ra
5(3-x)^2 là số tự nhiên nhỏ nhất
\(\Rightarrow5\left(3-x\right)^2=0\)
\(\Rightarrow\) x=3
Khi đó: B=4
Vậy B đạt GTNN là 4 tại x=3c) Ta có
c) TA có: (2x-3)^2\(\ge\)0 với mọi x thuộc Z
(2-y) ^ 4\(\ge\)0 với mọi y thuộc Z
Từ 2 điều trên, để A có GTNN, suy ra:\(\hept{\begin{cases}\\\left(2-y\right)^4=0\Rightarrow y=2\end{cases}\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}}\)
Khi đó C=0 tại x=3/2, y=2
\(A=\left(x-2\right)^2+3\)
Do \(\left(x-2\right)^2\)> hoặc bằng 0
=>A > hoặc bằng 3
Vậy GTNN của A là 3 <=>\(x-2=0\)
=>x=2
a, A < = 3
Dấu "=" xảy ra <=> x+1=0 <=> x=-1
Vạy ..........
b, B < = 11
Dấu "=" xảy ra <=> x+1=0 và 2-y=0 <=> x=-1 và y=2
Vậy ............
c, C < = 5
Dấu "=" xảy ra <=> 2x+6=0 và 7-y=0 <=> x=-3 và y=7
Vậy ...........
Tk mk nha
a, ta có !x+1! >_0
\(\Rightarrow\)3-!x+1! _<3-0
\(\Rightarrow A\)_< 3
Vậy GTLN của A là 3