K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

a, A < = 3

Dấu "=" xảy ra <=> x+1=0 <=> x=-1

Vạy ..........

b, B < = 11

Dấu "=" xảy ra <=> x+1=0 và 2-y=0 <=> x=-1 và y=2

Vậy ............

c, C < = 5

Dấu "=" xảy ra <=> 2x+6=0 và 7-y=0 <=> x=-3 và y=7

Vậy ...........

Tk mk nha

29 tháng 1 2018

a, ta có !x+1! >_0

\(\Rightarrow\)3-!x+1! _<3-0

\(\Rightarrow A\)_< 3

Vậy GTLN của A  là 3

1 tháng 4 2020

a)  ( x - 1 )2 \(\ge\)0

\(|2y+2|\)\(\ge0\)

\(\Rightarrow\left(x-1\right)^2+|2y+2|\ge0\)

\(\Rightarrow\left(x-1\right)^2+|2y+2|-3\ge-3\)

\(Min_A=-3\)

12 tháng 2 2018

Bài j mà dễ v~ !

3 tháng 10 2018

dễ thì bạn làm đi chớ

29 tháng 1 2019

Sửa đề:

A=/x+5/+10

Ta có: /x+5/>= 0 với mọi x>=0

=> A=/x+5/+10 >= 10

=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5

Vậy...

29 tháng 1 2019

\(\text{a) }A=\left|x+5\right|+10\)

\(\text{Vì }\left|x+5\right|\ge0\forall x\)

\(\Rightarrow A=\left|x+5\right|+10\ge10\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|x+5\right|=0\)

\(\Rightarrow x=-5\)

\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)

\(\text{b) }\left|3-x\right|+5\)

\(\text{Vì }\left|3-x\right|\ge0\forall x\)

\(\Rightarrow\left|3-x\right|+5\ge5\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|3-x\right|=0\)

\(\Rightarrow x=3\)

\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)

\(\text{d) }D=\left(x+2\right)^2+15\)

\(\text{Vì ( x + 2 )}^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+15\ge15\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

25 tháng 1 2020

1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)

\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)

Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5

2) a.   \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)

           \(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)

Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2 

3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)

              \(A^2=ab-bc-ac+bc\)

             \(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)

            \(A^2=0+a\left(b-c\right)\)

           \(A^2=-20.\left(-5\right)=100\)

      \(\Rightarrow A=10\)

Chúc bạn năm mới vui vẻ nha! Happy new year !

                                                                                                       

10 tháng 7 2016

a,,A=|x-3|+1

Ta thấy:\(\left|x-3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+1\ge0+1=1\)

\(\Rightarrow A\ge1\).Dấu = khi x=3

Vậy....

b)B=|6-2x|-5

Ta thấy:\(\left|6-2x\right|\ge0\)

\(\Rightarrow\left|6-2x\right|-5\ge0-5=-5\)

\(\Rightarrow B\ge-5\).Dấu = khi x=3

Vậy...

c) C=3-|x+1|

Ta thấy:\(-\left|x+1\right|\le0\)

\(\Rightarrow3-\left|x+1\right|\le3-0=3\)

\(\Rightarrow C\le3\).Dấu = khi x=-1

e) E= -(x+1)^2 -|2-y|+11

Ta thấy:\(\hept{\begin{cases}-\left(x+1\right)^2\\-\left|2-y\right|\end{cases}\le}0\)

\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)

\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le0+11=11\)

\(\Rightarrow E\le11\).Dấu = khi x=-1 y=2

Vậy... 

f)F= (x-1)^2+|2y+2|-3

Ta thấy:\(\hept{\begin{cases}\left(x-1\right)^2\\\left|2y+2\right|\end{cases}}\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge0-3=-3\)

\(\Rightarrow F\ge-3\).Dấu = khi x=1  y=-1

Vậy...

a) \(A=\left(x-1\right)^2+\left|2y+2\right|-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left|2y+2\right|\ge0\forall y\)

Do đó: \(\left(x-1\right)^2+\left|2y+2\right|\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left|2y+2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-1\right)^2+\left|2y+2\right|-3\) là -3 khi x=1 và y=-1

b) \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\)

Ta có: \(\left(x+5\right)^2\ge0\forall x\)

\(\left(2y-6\right)^2\ge0\forall y\)

Do đó: \(\left(x+5\right)^2+\left(2y-6\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\2y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\) là 1 khi x=-5 và y=3