K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

Bài 2

A/  \(x^2-2xy+y^2-4x+4y-5\)

\(=\left(x^2-2xy+y^2\right)-\left(4x-4y\right)-5\)

\(=\left(x-y\right)^2-4\left(x-y\right)-5\)

\(=\left(x-y\right)\left(x-y-4\right)-5\)

b/ trên máy tính đâu có đặt cột dọc được :v chịu khó tính nháp là ra xD

17 tháng 4 2019

Bài 3

1/a \(\left(x^2-4x\right)^2+2\left(x-2\right)^2=4^3.\)

\(\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=64\)

Cho \(x^2-4x\) là S

\(\Rightarrow S^2+2\left(S+4\right)=64\)

\(\Rightarrow S^2+2S+8=64\)

\(\Rightarrow S^2+2S=64-8\)

\(\Rightarrow S^2+2S=56\)

Tính ko ra:v đề có sai ko?

2/  \(2x^2+3y^2+4x=19\)

\(\Rightarrow2x^2+4x=19-3y^2\)

\(\Rightarrow2x^2+4x=21-2-3y^2\)

\(\Rightarrow2x^2+4x+2=21-3y^2\)

\(\Rightarrow2\left(x^2+2x+1\right)=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Từ đây xét tiếp để ra kq :v

20 tháng 6 2019

Tham khảo các bài toán khó trên h.vn nhé bạn hoặc

20 tháng 6 2019

Câu hỏi tương tự:https://olm.vn/hoi-dap/detail/217354191899.html

~Hok tốt~

9 tháng 4 2019

Ai kb vs mình nha

9 tháng 4 2019

hello bạn cùng tuổi cùng tên nha

Bài 1 1) Phân tích đa thức thành nhân a) \(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)b)\(x^4+4\)Bài 2 1) Gải phương trình \(\left(\frac{x+3}{x-2}\right)^2+6.\left(\frac{x-3}{x+2}\right)^2=7.\left(\frac{x^2-9}{x^2-4}\right)\)2) Tìm số nguyên x,y thỏa mãn \(x^2+y^2+5xy+60=37xy\)Bài 3 1)  Cho 3 số  x,y,z đôi một khác nhau thỏa mãn \(x^3+y^3+z^3=3xyz\left(xyz\ne0\right)\)2) Tìm GTLN và GTNN \(A+\frac{27-12x}{x^2+9}\)( bài...
Đọc tiếp

Bài 1 

1) Phân tích đa thức thành nhân 

a) \(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)

b)\(x^4+4\)

Bài 2 

1) Gải phương trình \(\left(\frac{x+3}{x-2}\right)^2+6.\left(\frac{x-3}{x+2}\right)^2=7.\left(\frac{x^2-9}{x^2-4}\right)\)

2) Tìm số nguyên x,y thỏa mãn \(x^2+y^2+5xy+60=37xy\)

Bài 3 

1)  Cho 3 số  x,y,z đôi một khác nhau thỏa mãn \(x^3+y^3+z^3=3xyz\left(xyz\ne0\right)\)

2) Tìm GTLN và GTNN \(A+\frac{27-12x}{x^2+9}\)( bài 330 sách NCPT tập 2 )

Bài 4 

1) Cho 2 số chính phương liên tiếp . CMR tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ 

2) Cho \(F\left(x\right)=x^2+ax^2+bx+c\left(a,b,c\in R\right)\)

Biết đa thức F(x) chia cho x+1 dư -4 và chia cho x-2 dư 5

Tính \(A=\left(a^{2019}+b^{2019}\right).\left(b^{2020}-c^{2020}\right).\left(c^{2021}+a^{2021}\right)\)

Bài 5 : Cho O là trung điểm của AB , trên cùng một nửa mặt phẳng chứa AB vẽ tia Ax và By vuông góc với AB.   Trên tia Ax lấy  C , qua O kẻ đường thẳng vuông góc với OC

CMR 1) \(AB^2=4AC.BD\)

2) Kẻ OM vuông góc  với CD. CMR CO là phân giác góc ACD và AC=CM

3) Tia BM cắt Ax tại N . CMR C là trung điểm của AN

4) Kẻ MH vuông góc AB .  CMR AD,BC,MH đồng quy

Câu 6 : Tìm số nguyên n sao cho

\(n^3+2018n=2020^{2019}+4\)

2
14 tháng 4 2019

\(\left[\left(x+1\right).\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)

\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)

Đặt m=x2+5x+4, ta có:

\(m.\left(m+2\right)-24=m^2+2m-24=m^2+6m-4m-24\)

\(=m.\left(m+6\right)-4.\left(m+6\right)=\left(m-4\right).\left(m+6\right)\)

Tự làm tiếp :v 

15 tháng 4 2019

\(1.a\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\)

\(=\left(x^2+5x+5\right)^2-1-24\)

\(=\left(x^2+5x+5\right)^2-25\)

\(=\left(x^2+5x+5+5\right)\left(x^2+5x+5-5\right)\)

\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\)

\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

\(b.x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

\(2.a\) Đặt  \(a=\frac{x+3}{x-2},b=\frac{x-3}{x+2}\)

Thay vào PT ta được:\(a^2+6b^2=7ab\)

                                \(\Leftrightarrow a^2-7ab+6b^2=0\)  

                                 \(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

                                 \(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

                                  \(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)

                                   \(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a-6b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1hayx=6\end{cases}}\) (bước kia dài bạn tự làm nhé)

Đề KSHSG lần 1 huyện Sông Lô - Vĩnh Phúc môn toán lớp 8,5 Câu 1:a) Phân tích đa thức thành nhân tử: \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)b) Cho x,y,z thỏa mãn: \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)Hãy tính \(P=\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\) Câu 2: Cho đa...
Đọc tiếp

Đề KSHSG lần 1 huyện Sông Lô - Vĩnh Phúc môn toán lớp 8,5

 

Câu 1:

a) Phân tích đa thức thành nhân tử: \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)

b) Cho x,y,z thỏa mãn: 

\(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)

Hãy tính \(P=\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\)

 

Câu 2: Cho đa thức \(P\left(x\right)=\left(x+5\right)\left(x+10\right)\left(x+15\right)\left(x+20\right)+2021\)

Tìm đa thức dư khi chia P(x) cho đa thức \(x^2+25x+120\)

 

Câu 3: Cho a,b,c,d là các số nguyên thỏa mãn: \(a^3+b^3+19d^3-5c^3=0\)

Chứng minh rằng: a + b + c + d chia hết cho 3

 

Câu 4: Tìm nghiệm nguyên của PT:

\(4x^2+2xy+4x+y+3=0\)

 

Câu 5: Cho phương trình: \(\frac{x-2}{x-m}=\frac{x-1}{x+2}\) , tìm m để PT vô nghiệm

 

Câu 6: Cho a,b,c không âm thỏa mãn a + b + c = 3. Tìm Min và Max của:

\(P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)

 

Câu 7: Cho p là số nguyên tố, biết p2 + 23 có đúng 14 ước dương. Tìm p

 

Câu 8: Cho tam giác ABC vuông tại A, (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ AH chứa điểm C vẽ hình vuông AHKE. Gọi P là giao điểm của KE và AC

a) Chứng minh tam giác ABP vuông cân

b) Vẽ hình vuông APQB. Gọi I là giao điểm của BP và AQ. Chứng minh H,I,E thẳng hàng

 

Câu 9: Cho tam giác ABC có \(\widehat{A}>\widehat{B}\). Trên cạnh BC lấy điểm H sao cho \(\widehat{HAC}=\widehat{ABC}\). Đường phân giác của góc BAH cắt BH tại E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. CMR: CF // AE

 

Câu 10: Cho đa giác đều 12 cạnh A1A2...A12 . Tại đỉnh A1 ta viết dấu (-) , các đỉnh còn lại ta viết dấu (+) . Mỗi lần cho phép lấy ra ba đỉnh liên tiếp và đổi dấu đồng thời các đỉnh đó. Hỏi sau hữu hạn bước có thể nhận được kết quả là đỉnh A2 mang dấu (-) còn các đỉnh khác mang dấu (+) được không?

 

5
24 tháng 9 2020

Câu 1

a) xy(x+y)-yz(y+z)+zx[(x+y)-(y+z)]=xy(x+y)+zx(x+y)-yz(y+z)-zx(y+z)=x(x+y)(y+z)-z(y+z)(y+x)=(x+y)(y+z)(x-z)

b) \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)

\(\Leftrightarrow\frac{x-z+z-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z+x-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-y+y-x}{\left(y-z\right)\left(y-x\right)}=2022\)

\(\Leftrightarrow\frac{-1}{z-y}+\frac{-1}{z-x}+\frac{-1}{x-z}+\frac{-1}{x-y}+\frac{-1}{x-y}+\frac{-1}{y-z}+\frac{1}{y-z}=2022\)

\(\Leftrightarrow2\left(\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\right)=2022\)

\(\Leftrightarrow\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}=1011\)

24 tháng 9 2020

Câu 8: bạn sửa lại đề: AB<AC

a) Xét tam giác AHB và tam giác AEP có:

\(\widehat{AHB}=\widehat{AEP}=90^0\)

AH=KE (Tứ giác AHKE là hình vuông)

\(\widehat{HAB}=\widehat{AEP}\)(cùng phụ với \(\widehat{HAC}\))

\(\Rightarrow\Delta AHB=\Delta AEP\)(g-c-g)

=> AB=AP (2 cạnh tương ứng) => \(\Delta\)BAP cân tại A

b) Tứ giác ABQP là hình vuông nên IA=IB=IQ=IP (1)

Tam giác BKP vuông tại K nên KP=KB=KI (2)

Từ (1) và (2) suy ra: AI=KI nên I là đường trung trực của AK (3)

Vì AHKE là hình vuông nên HE là trung trực của AK (4)

Từ (3) và (4) suy ra: H;I:E cùng thuộc đường trung trực của AK hay H;I:E thằng hàng (đpcm)

Câu 9: Có \(\widehat{CEA}=\widehat{B}+\widehat{BAE}=\widehat{HAC}+\widehat{EAH}=\widehat{CAE}\)

\(\Rightarrow\Delta CAE\)cân tại C => CA=CE (1)

Qua H kẻ đường thằng song song với AB cắt MF ở K. Ta có \(\frac{BE}{EH}=\frac{MB}{KH}=\frac{MA}{KH}=\frac{FA}{FH}\left(2\right)\)

AE là phân giác của tam giác ABH nên \(\frac{BE}{EH}=\frac{AB}{AH}\left(3\right)\)

\(\Delta CAH\)và \(\Delta CBA\)đồng dạng \(\Rightarrow\frac{AB}{AH}=\frac{CA}{CH}=\frac{CE}{CH}\)(theo (1)) (4)

Từ (2);(3) và (4) => \(\frac{FA}{FH}=\frac{CE}{CH}\)hay \(\frac{AE}{FH}=\frac{CE}{CH}\)=> CF//AE (đpcm)

Câu 10: 

Chia các đỉnh của tam giác thành 3 nhóm \(\left\{A_1;A_4;A_7;A_{10}\right\};\left\{A_2;A_5;A_8;A_{11}\right\};\left\{A_3;A_6;A_9;A_{12}\right\}\)

Chọn 3 đỉnh liên tiếp thì mỗi đỉnh vào 1 nhóm

Do vậy số dấu "-" trong mỗi nhóm là +1 hoặc -1

Mà nhóm II và nhóm III cùng tính chẵn lẻ về số dấu "-"

Khi bắt đầu nhóm II, nhóm III số dấu "-" bằng 0. Nếu đỉnh A2 mang dấu "-" các đỉnh còn lại mang dấu "+" thì nhóm II, nhóm III khác đỉnh chẵn lẻ về số dấu "=". Mâu thuẫn!

P.s bài trình bày khó hiểu, bạn thông cảm! :)

Bài 1:1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 12,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BNBài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là...
Đọc tiếp

Bài 1:

1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 1

2,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40

Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BN

Bài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là mỗi đường thẳng chia hình vuông thành 2 tứ giác có tỉ số diện tích là \(\frac{2}{5}\).Chứng minh rằng có 4 đường thẳng trong 13 đoạn thẳng đó cùng đi qua 1 điểm

Bài 4:Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F

Chúng minh:

1,CE.CD=CB.CF và △ABC đồng dạng △FCE

2,AB.AE+AD.AF=AC2

Bài 5:

1,Tìm các số nguyên x,y thảo mãn x2+8y2+4xy-2x-4y=4

2,Cho đa thức h(x) bậc 4 ,hệ số của 3 cao nhất là 1 ,biết h(1)=2;h(2)=5;H(4)=17;H(-3)=10.Tìm đa thức h(x)

Bài 6:Cho biểu thức :A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\) với x≠0;x≠1;x≠2;x≠-1

1,Rút gọn biểu thức A

2,Tính A biết x thỏa mãn x3-4x2+3x=0

Bài 7:a,Cho a+b+c​​≠0 và a3+b3+c3=3abc.Tính N=\(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)

b,Tìm số tự nhiên n để n2+4n+2013 là 1 số chính phương

Bai 8: Hình thang ABCD (AB//CD) có 2 đường chéo cắt nhau tại O .Đường thẳng qua O và song song với đáy AB cắt cạnh bên AD ,BC theo thứ tự ở M và N.

a, CMR OM=ON

b,CMR: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c,Biết SAOB=20152(đvị diện tích );SCOD=20162(đvị diện tích ).Tính SABCD

Bài 9:Cho a,b,c là các số dương .Chứng minh bất đẳng thức :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>hoacbang\frac{a+b+c}{2}\)

 

 

 

3
13 tháng 2 2020

áp dụng bđt cauchy-shwarz dạng engel

\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)

13 tháng 2 2020

Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Mà a+b+c khác 0 nên a = b = c

\(\Rightarrow N=1\)

3 tháng 3 2020

a) ta có: \(|4x^2-1|\ge0\forall x\)

\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)

Mà \(|4x^2-1|+3x|2x-1|=0\)

=> I4x^2-1I và 3xI2x-1I=0

=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0

=> 4x^2=1 và x=0 hoặc 2x=1

=> x^2=1/4 và x=0 hoặc x=1/2

=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2

Vậy x=\(\pm\frac{1}{2}\); x=0

3 tháng 3 2020

Phạm Nhật Quỳnh

Bạn xem lại nhé x chưa chắc đã dương nha