K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

Bài 2 1)Phân tích đa thức thành nhân tử \(x^2-2xy+y^2-4x+4y-5\)2)Tìm đa thức dư khi chia \(x^{20}+x^{10}+x^5+1\)cho \(x^2-1\)Bài 3 1) Giari phương trình \(\left(x^2-4x\right)^2+2.\left(x-2\right)^2=4^3\)b)\(\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}=\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}\)2) tìm các số nguyen x,y thỏa mãn \(2x^2+3y^2+4x=19\)Bài 4 Cho hình vuông ABCD và điểm H thuộc BC , điểm H không trùng B và C .  Trên nửa mặt...
Đọc tiếp

Bài 2 

1)Phân tích đa thức thành nhân tử \(x^2-2xy+y^2-4x+4y-5\)

2)Tìm đa thức dư khi chia \(x^{20}+x^{10}+x^5+1\)cho \(x^2-1\)

Bài 3 

1) Giari phương trình \(\left(x^2-4x\right)^2+2.\left(x-2\right)^2=4^3\)

b)\(\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}=\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}\)

2) tìm các số nguyen x,y thỏa mãn \(2x^2+3y^2+4x=19\)

Bài 4 

Cho hình vuông ABCD và điểm H thuộc BC , điểm H không trùng B và C .  Trên nửa mặt phẳng bờ BC không chưa mình vuông ABCD dựng hình vuông CHIK 

1) CMR DH vuông góc BK

2) Gọi M là giao điểm của DH và BK ,  N là giao điểm của  KH và BD . CMR DN.BD+KM.BK=DK^2

3) CMR \(\frac{BH}{HC}+\frac{DH}{HM}+\frac{KH}{HN}>6\)

Bài 5 

1 ) Tìm GTNN của \(P=xy.\left(x+4\right).\left(y-2\right)+6x^2+5y^2+24x-10y+2043\)

2) Cho các số x,y,z không âm thỏa mã 

x+y+z=1 . CMR

\(x+2y+z\ge4.\left(1-x\right).\left(1-y\right).\left(1-z\right)\)

 

2
17 tháng 4 2019

Bài 2

A/  \(x^2-2xy+y^2-4x+4y-5\)

\(=\left(x^2-2xy+y^2\right)-\left(4x-4y\right)-5\)

\(=\left(x-y\right)^2-4\left(x-y\right)-5\)

\(=\left(x-y\right)\left(x-y-4\right)-5\)

b/ trên máy tính đâu có đặt cột dọc được :v chịu khó tính nháp là ra xD

17 tháng 4 2019

Bài 3

1/a \(\left(x^2-4x\right)^2+2\left(x-2\right)^2=4^3.\)

\(\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=64\)

Cho \(x^2-4x\) là S

\(\Rightarrow S^2+2\left(S+4\right)=64\)

\(\Rightarrow S^2+2S+8=64\)

\(\Rightarrow S^2+2S=64-8\)

\(\Rightarrow S^2+2S=56\)

Tính ko ra:v đề có sai ko?

2/  \(2x^2+3y^2+4x=19\)

\(\Rightarrow2x^2+4x=19-3y^2\)

\(\Rightarrow2x^2+4x=21-2-3y^2\)

\(\Rightarrow2x^2+4x+2=21-3y^2\)

\(\Rightarrow2\left(x^2+2x+1\right)=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Từ đây xét tiếp để ra kq :v

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

11 tháng 7 2019

\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)

\(b,5x^3y^2-25x^2y^3+40xy^4\)

\(=5xy^2\left(x^2-5xy+8y^2\right)\)

\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)

\(=-2x^2y^2\left(2x-3+4x^2y\right)\)

\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)

\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)

\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)

\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)

\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)

\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(a-b-c\right)\)

\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)

\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)

\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)

11 tháng 7 2019

a,3x3y315x2y2=3x2y2(xy5)a,3x3y3−15x2y2=3x2y2(xy−5)

b,5x3y225x2y3+40xy4b,5x3y2−25x2y3+40xy4

=5xy2(x25xy+8y2)=5xy2(x2−5xy+8y2)

c,4x3y2+6x2y28x4y3c,−4x3y2+6x2y2−8x4y3

=2x2y2(2x3+4x2y)=−2x2y2(2x−3+4x2y)

d,a3x2y52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y

=a3x2(y52x2+23ay)=a3x2(y−52x2+23ay)

e,a(x+1)b(x+1)=(x+1)(ab)e,a(x+1)−b(x+1)=(x+1)(a−b)

f,2x(x5y)+8y(5yx)f,2x(x−5y)+8y(5y−x)

=2x(x5y)8y(x5y)=(x5y)(2x8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)

g,a(x2+1)+b(1x2)c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)

=(x2+1)(abc)=(x2+1)(a−b−c)

h,9(xy)227(yx)3h,9(x−y)2−27(y−x)3

=9(xy)2+27(xy)3

Bài làm

a) 812 : 46 = 236 : 212 = 214 

b) 276 : 92 = 318 : 34 = 314 

còn tiếp....

Bài làm

c) \(\frac{9^{15}.25^3.4^3}{3^{10}.50^6}\)

\(=\frac{3^{30}.5^6.2^6}{3^{10}.2^6.5^{12}}\)

\(=\frac{3^{20}.1.1}{1.1.5^6}\)

\(=\frac{\text{3486784401}}{\text{15625}}\)