K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`a)`

Ta có: `2020` là lũy thừa bậc chẵn

`=>`\(\left(-3\right)^{2020}=3^{2020}\)

`M = `\(3^{2020}-3^{2020}=0\)

`=> 0 = 0`

`=> M = N`

`b)`

`M =`\(\left(-3\right)^{2021}+3^{2020}\)

`=`\(3^{2020}-3^{2021}\)

Vì \(3^{2021}>3^{2020}\)

`=>`\(3^{2020}-3^{2021}< 0\)

`N = [ (-3)]^0`

`= (-3)^0`

`= 1`

Vì `1 > 0`

`=> M < N.`

`@` `\text {Duynamlvhg}`

a: M=3^2020-3^2020=0

b: M=-3^2021+3^2020=-3^2020(3-1)=-3^2020*2<0

N=[(-3)]^0=1

=>M<N

24 tháng 3 2019

mk chỉ cần phần c thui nha!!!!!!!

24 tháng 3 2019

c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)

Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)

\(\Rightarrow M>N\) 

DD
2 tháng 3 2021

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

2 tháng 3 2021

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm 

19 tháng 4 2018

không biết

14 tháng 5 2018

\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)

vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)

14 tháng 5 2018

\(B=\frac{2^{2020}+2}{2^{2021}+2}\)

\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)

\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)

Vậy  \(A=B\)

P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo

\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)

Vậy   \(A>B\)