Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\sqrt{\dfrac{9}{20}}-\sqrt{\dfrac{1}{2}}\right).\sqrt{2}=\sqrt{\dfrac{9}{20}.2}-\sqrt{\dfrac{1}{2}.2}=\sqrt{\dfrac{9}{10}}-1=\dfrac{3}{\sqrt{10}}-1\)
\(=\dfrac{3\sqrt{10}}{10}-1\)
b) \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\sqrt{3}=\sqrt{12.3}+\sqrt{27.3}-\sqrt{3.3}\)
\(=\sqrt{36}+\sqrt{81}-\sqrt{9}=6+9-3=12\)
c) \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right)\sqrt{6}=\sqrt{\dfrac{8}{3}.6}-\sqrt{24.6}+\sqrt{\dfrac{50}{3}.6}\)
\(=\sqrt{16}-\sqrt{144}+\sqrt{100}=4-12+10=2\)
a: Ta có: \(\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}\)
\(=\dfrac{\sqrt{10}\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{5}-1\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2+\sqrt{3}}{2}\)
b) Ta có: \(\sqrt{\left(1-\sqrt{2006}\right)^2}\cdot\sqrt{2007+2\sqrt{2006}}\)
\(=\left(\sqrt{2006}-1\right)\left(\sqrt{2006}+1\right)\)
=2005
\(A=2\sqrt{2}+\sqrt{3}\)
\(B=\dfrac{2\sqrt{2}}{1+\sqrt{2-\sqrt{3}}}=\dfrac{4}{2+\sqrt{3}-1}=\dfrac{4}{\sqrt{3}+1}=2\sqrt{3}-2\)
=>A>B
Trả lời:
\(A=\sqrt{3}-\frac{\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(A=\sqrt{3}+\frac{\sqrt{6}}{\sqrt{2}-1}-\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\frac{\sqrt{6}.\left(\sqrt{2}+1\right)}{2-1}-\frac{2.\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\sqrt{6}.\left(\sqrt{2}+1\right)-2\)
\(A=\sqrt{3}+\sqrt{12}+\sqrt{6}-2\)
\(A=\sqrt{3}+2\sqrt{3}+\sqrt{6}-2\)
\(A=3\sqrt{3}+\sqrt{6}-2\)
Mình nhầm