K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=2\sqrt{2}+\sqrt{3}\)

\(B=\dfrac{2\sqrt{2}}{1+\sqrt{2-\sqrt{3}}}=\dfrac{4}{2+\sqrt{3}-1}=\dfrac{4}{\sqrt{3}+1}=2\sqrt{3}-2\)

=>A>B

15 tháng 11 2023

a: ĐKXĐ: x-10>=0

=>x>=10

b: \(\sqrt{9a^2b}=\sqrt{\left(3a\right)^2\cdot b}=3a\cdot\sqrt{b}\)

c: \(\left(2\sqrt{3}+1\right)^2=13+4\sqrt{3}\)

\(\left(2\sqrt{2}+\sqrt{5}\right)^2=8+5+2\cdot2\sqrt{2}\cdot\sqrt{5}=13+4\sqrt{10}\)

mà \(4\sqrt{3}< 4\sqrt{10}\left(3< 10\right)\)

nên \(\left(2\sqrt{3}+1\right)^2< \left(2\sqrt{2}+\sqrt{5}\right)^2\)

=>\(2\sqrt{3}+1< 2\sqrt{2}+\sqrt{5}\)

25 tháng 7 2021

a,Ta có :  \(1-\sqrt{3}\)\(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)

Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

b, Đặt A =  \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)

Vậy (*) = 0 

1: 

Ta có: \(\sqrt{2}-\sqrt{6}\)

\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)

\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

12 tháng 9 2023

a) \(\left(2\sqrt{2}-3\right)^2\)

\(=\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2}\cdot3+3^2\)

\(=4\cdot2-12\sqrt{2}+9\)

\(=17-12\sqrt{2}\)

b) \(\sqrt{\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\right)^2}\)

\(=\left|\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\right|\)

\(=\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\)

\(=\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\)

\(=\dfrac{\sqrt{2}-1}{2}\)

c) \(\sqrt{\left(0,1-\sqrt{0,1}\right)^2}\)

\(=\left|0,1-\sqrt{0,1}\right|\)

\(=0,1-\sqrt{0,1}\)

17 tháng 6 2017

1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5   4^2=16 vậy căn 11+căn 5=4

2/ tương tự (3 căn3 )^2=27   (căn19)^2-(căn 2)^2=19-2=17  vậy 3 căn 3 >căn 19-căn2

5 tháng 5 2018

\(a^2+1=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\)

tương tự \(\Rightarrow\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\left(a+b\right)\left(c+a\right)\left(b+c\right)=a^2b+b^2a+c^2a+a^2c+b^2c+c^2b+2abc\)

\(\Rightarrow\)VT=\(a^2b+b^2a+b^2c+c^2b+c^2a+a^2c+3abc\) =\(ab\left(a+b\right)+bc\left(a+b\right)+ca\left(a+b\right)+c\left(ab+bc+ca\right)\)=a+b+c

ta có (a+b+c)^2>=3(ab+bc+ca)=3 nên a+b+c>=căn3(đccm)

27 tháng 9 2017

a) Ta có: 
√2005 + √2003 > √2002 + √2000 
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000) 
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000) 
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000) 
<=> √2005 - √2003 < √2002 - √2000 
<=> √2005 + √2000 < √2002 + √2003 

b) Tương tự câu a 
√(a + 6) + √(a + 4) > √(a + 2) + √a 
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a] 
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a] 
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a] 
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a 
<=> √(a + 6) + √a < √(a + 4) + √(a + 2) 
đúng ko ?

27 tháng 9 2017

hình như nó sai cái gì a

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

$\sqrt{3}+5> \sqrt{1}+5=6$

$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$

$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$