Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề \(\Rightarrow a^{2014}+b^{2014}-2\left(a^{2013}+b^{2013}\right)+a^{2012}+b^{2012}=0\)
\(\Leftrightarrow a^{2012}\left(a^2-2a+1\right)+b^{2012}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a=0\text{ hoặc }a=1\right)\text{ và }\left(b=0\text{ hoặc }b=1\right)\)
\(+a=0\text{ hoặc }a=1\text{ thì }a^{2014}=a^{2010}\)
\(+b=0\text{ hoặc }b=1\text{ thì }b^{2014}=b^{2010}\)
Suy ra \(a^{2014}+b^{2014}=a^{2010}+b^{2010}\)
Ta có:
\(a^{2010}+b^{2010}+a^{2012}+b^{2012}\)
\(=\left(a^{2010}+a^{2012}\right)+\left(b^{2010}+b^{2012}\right)\ge2a^{2011}+2b^{2011}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^{2010}=a^{2012}\\b^{2010}=b^{2012}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)
\(\Rightarrow a^{2013}+b^{2013}=2\)
Vậy \(S=2\)
Chia cả tử và mẫu của mỗi phân số tương ứng cho b2015; b2014
=> cần chứng minh: \(\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}>\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}\)
Ta có: \(VT=\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}=\frac{\left(\frac{a}{b}\right)^{2015}+1}{\left(\frac{a}{b}\right)^{2015}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}\)
\(VP=\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}=\frac{\left(\frac{a}{b}\right)^{2014}+1}{\left(\frac{a}{b}\right)^{2014}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)
Vì a> b > 0 => a/b > 1. Do đó:
\(\left(\frac{a}{b}\right)^{2015}+1>\left(\frac{a}{b}\right)^{2014}+1\)
=> \(\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}<\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\Rightarrow1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}>1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)
=> VT > VP
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15