Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai. C/m 28x-16y chia hết cho 23 mới đúng
3x-5y chia hết cho 23 => 6(3x-5y)=18x-30y chia hết cho 23
28x-16y+18x-30y=46x-46y chia hết cho 23 nên 28x-16y chia hết cho 23
a chia hết cho 6
=)11a chia hết cho 6
a+16b chia hết cho 6
=)16b và a cùng chia hết cho 6
có 16b chia hết cho 6 mà 16 ko chia hết cho 6
=)b chia hết cho 6
=)8b chia hết cho 6
có 11a và8b chia hết cho 6
=)11a+8b chia hết cho 6
Trả lời:
\(\left(3n-5\right)⋮\left(n+1\right)\)
\(\Rightarrow3\left(n+1\right)-8⋮\left(n+1\right)\)
Vì 3 (n + 1 ) chia hết cho ( n + 1 )
nên 8 chia hết cho ( n + 1 )
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
n+1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 0 | -2 | 1 | -3 | 3 | -5 | 7 | -9 |
Vậy \(n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
(3n+5)chia hết cho (n+1)
=> 3n+3+2 chia hết cho (n+1)
=> 2 chia hết cho (n+1)
=> n+1 = { -2;-1;1;2}
=> n={-3;-2;0;1}
Ta có: 7 số nguyên đó sẽ có dạng toàn là 2k hoặc toàn là 2k+1 hoặc cả 2k và 2k+1:
Xét TH1: (toàn có dạng 2k);
suy ra cả 7 số đều là chẵn nên chia hết cho 2 và chia hết cho : 7x2=14;
Mà 14 chia hết cho 7 nên TH1 chia hết cho 7;
Xét TH2: (toàn có dạng 2k+1);
suy ra 7 x (2k+1) chia hết cho 7;
Vậy TH2 chia hết cho 7;
Xét TH3: Tồn tại ít nhất 2 chẵn và 2 lẻ nên cũng tồn tại ít nhất 1 tổng chia hết cho 7;
Ta có điều phải chứng minh...
cái đề bài của bạn hơi bị sao í..."tổng của 1 số hạng" là sao z?
i don't now
mong thông cảm !
...........................
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
ta có :
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
nhiều qá lm sao nổi
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
Ta có: \(6x+1=2\left(3x-1\right)+3\)
Vì \(2\left(3x-1\right)⋮\left(3x-1\right)\Rightarrow3⋮\left(3x-1\right)\)
\(\Rightarrow3x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow3x=\left\{2;0;4;-2\right\}\)
\(\Rightarrow x=\left\{\frac{2}{3};0;\frac{4}{3};\frac{-2}{3}\right\}\)
Vì biểu thức là số nguyên
Vậy x = 0
Đầu bài có thiếu không nhỉ?