K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

Dễ vl

 

6 tháng 2 2016

Thiếu đề nặng

6 tháng 2 2016

bổ sung đi và giúp mình với

 

16 tháng 1 2018

A B H C

Câu 1 :

Xét \(\Delta AHC\) có :

\(\widehat{H}=90^o\left(AH\perp BC-gt\right)\)

=> \(\Delta AHC\) vuông tại H

Ta có : \(AC^2=AH^2+HC^2\) (Định lí PYTAGO)

=> \(AC^2=12^2+18^2=325\)

=> \(AC=\sqrt{325}\)

Xét \(\Delta ABH\) có :

\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)

=> \(\Delta ABH\) vuông tại H

Ta có : \(AB^2=AH^2+BH^2=12^2+9^2=225\)

=> \(AB=\sqrt{225}=15\left(cm\right)\)

Câu 2 :

Xét \(\Delta AHC\) vuông tại H (cmt) có :

\(AC^2=AH^2+HC^2=24^2+18^2=900\) (Định lí PITAGO)

=> \(AC=\sqrt{900}=30\left(cm\right)\)

Xét \(\Delta ABH\perp H\left(cmt\right)\) có :

\(AB^2=AH^2+BH^2=24^2+32^2=1600\) (định lí PITAGO)

=> \(AB=\sqrt{1600}=40\left(cm\right)\)

Câu 3 :

Xét \(\Delta AHC\) vuông tại H (cmt) có :

\(AC^2=AH^2+HC^2=2^2+4^2=20\) (Định lí PITAGO)

=> \(AC=\sqrt{20}\)

Xét \(\Delta ABH\perp H\left(cmt\right)\) có :

\(AB^2=AH^2+BH^2=2^2+1^2=5\)(Định lí PITAGO)

=> \(AB=\sqrt{5}\)

Câu 4 :

Xét \(\Delta AHC\) vuông tại H (cmt) có :

\(AC^2=AH^2+HC^2=\left(\sqrt{3}\right)^2+4^2=19\)(Định lí PITAGO)

=> \(AC=\sqrt{19}\)

Xét \(\Delta ABH\perp H\left(cmt\right)\) có :

\(AB^2=AH^2+BH^2=\left(\sqrt{3}\right)^2+1^2=4\)(Định lí PITAGO)

=> \(AB=\sqrt{4}=2\)

Câu 5 :

Xét \(\Delta AHC\) vuông tại H (cmt) có :

\(AC^2=AH^2+HC^2=1^2+1^2=1\)(Định lí PITAGO)

=> \(AC=\sqrt{1}=1\)

Xét \(\Delta ABH\perp H\left(cmt\right)\) có :

\(AB^2=AH^2+BH^2=1^2+1^2=1\) (Định lí PITAGO)

=> \(AB=\sqrt{1}=1\)

CÁC CÂU SAU LÀM TƯƠNG TỰ NHÉ !

22 tháng 10 2018

Trả lời dùm minh với, mình đang vội lắm

Ai nhanh nhất mình k cho

4 tháng 2 2021
Bạn ơi hình thì bạn tự vẽ nhé Ta cótam giác anh vuông tại h(ah vuông góc BC) áp dụng đ.lí Pytago: Ab^2=ah^2+bh^2 Ab^2=2^2+1^2 Ab^2=4+1=5 Ab=√5cm(dpcm) Vì tâm giác ách vuông tại h Áp dụng đ.lí Pytago: Ac^2=ha^2+hc^2 Ac^2=2^2+4^2 Ac^2=4+16 Ac^2=20 Ac=√20cm(dpcm) Ta có BC=hb+hc=1+4=5cm Xét :bc^2=ab^2+ac^2 Bc^2=(√5)^2+(√20)^2 Bc^2=25 BC=5cm =>Tam giác ABC vuông tại a (đ.lí Pytago đảo)(dpcm)
Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

7 tháng 4 2020

a) Xét tam giác ABC cân tại A có AH _|_ BC

=> AH là đường cao của tam giác ABC

Mà trong tam giác cân đường trung tuyến trùng với đường cao

=> AH là đường trung tuyến của tam giác ABC

=> BH=CH (đpcm)

b) Có tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\)

Xét tam giác EBH và tam giác FCH có:

CH=BH (cmt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(\widehat{HEB}=\widehat{HFC}=90^o\)

\(\Rightarrow\Delta EBH=\Delta FCH\left(ch-gh\right)\)

=> HE=HF (2 cạnh tương ứng) (đpcm)

c) Xét tam giác ABH có \(\widehat{H}\)=90o

=> Tam giác ABH vuông tại H

Áp dụng định lý Pytago vào tam giác ABH ta có:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow AB=\sqrt{5^2-4^2}=\sqrt{25-16}=\sqrt{9}=3\left(cm\right)\left(AB>0\right)\)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

8 tháng 4 2020

a) xét  tam giác BAH và tam giác CAH, có:

AB = AC ( tam giác ABC cân tại A)

Góc AHB = góc AHC = 90 độ (AH vuông góc với BC)

AH chung

=> tam giác BAH = tam giác CAH (cạnh huyền- cạnh góc vuông)

=> BH = CH ( 2 cạnh tương ứng)

b) Ta có: tam giác ABH = tam giác ACH ( theo phần a)

=> góc BAH = góc CAH (2 góc tương ứng) hay góc EAH = góc FAH

Xét tam giác  EAH và tam giác FAH, có

góc AEH = góc AFH = 90 độ(HE vuông góc với AB, HF vuông góc với AC)

AH chung

góc EAH = góc FAH (chứng minh trên)

=> tam giác EAH = tam giác FAH (cạnh huyền- góc nhọn)

=> HE = HF ( 2 cạnh tương ứng)

c) Xét tam giác AHB vuông tại H

Áp dụng định lí pytago vào tam giác AHB vuông tại H, ta có:

\(AH^2+BH^2=AB^2\) 

Thay số: \(AH^2+4^2=5^2\) 

=> \(AH^2=5^2-4^2\)  

\(AH^2\) = 9

=> AH = 3(cm)

d) Ta có: tam giác AEH = tam giác AFH (theo phần b)

=> AE = AF ( 2 cạnh tương ứng)

=> tam giác AEF cân tại A

=> góc AEF = góc AFE = (180 độ - góc A) : 2   (1)

mà ta lại có tam giác ABC cân tại A

=> góc ABC = góc ACB = ( 180 độ - góc A) :2     (2)

Từ (1) và (2)

=> Góc AEF = góc ABC

mà hai góc này ở vị trí đồng vị => EF // BC

Chúc bạn học tốt nha 

8 tháng 4 2020

a. Ta có : Tam giác ABC cân tại A  

                 AH vuông vs BC

Mà trong tam giác cân đg cao cg là đg tt 

=> HB=HC

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)