Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời dùm minh với, mình đang vội lắm
Ai nhanh nhất mình k cho
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Câu 1 :
Xét \(\Delta AHC\) có :
\(\widehat{H}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta AHC\) vuông tại H
Ta có : \(AC^2=AH^2+HC^2\) (Định lí PYTAGO)
=> \(AC^2=12^2+18^2=325\)
=> \(AC=\sqrt{325}\)
Xét \(\Delta ABH\) có :
\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta ABH\) vuông tại H
Ta có : \(AB^2=AH^2+BH^2=12^2+9^2=225\)
=> \(AB=\sqrt{225}=15\left(cm\right)\)
Câu 2 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=24^2+18^2=900\) (Định lí PITAGO)
=> \(AC=\sqrt{900}=30\left(cm\right)\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=24^2+32^2=1600\) (định lí PITAGO)
=> \(AB=\sqrt{1600}=40\left(cm\right)\)
Câu 3 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=2^2+4^2=20\) (Định lí PITAGO)
=> \(AC=\sqrt{20}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=2^2+1^2=5\)(Định lí PITAGO)
=> \(AB=\sqrt{5}\)
Câu 4 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=\left(\sqrt{3}\right)^2+4^2=19\)(Định lí PITAGO)
=> \(AC=\sqrt{19}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=\left(\sqrt{3}\right)^2+1^2=4\)(Định lí PITAGO)
=> \(AB=\sqrt{4}=2\)
Câu 5 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=1^2+1^2=1\)(Định lí PITAGO)
=> \(AC=\sqrt{1}=1\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=1^2+1^2=1\) (Định lí PITAGO)
=> \(AB=\sqrt{1}=1\)
CÁC CÂU SAU LÀM TƯƠNG TỰ NHÉ !
a: BC=25cm
\(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Hai câu còn lại bạn ghi lại đề phần BH đi bạn
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20cm
Vậy: AB=15cm; AC=20cm
Ta có: BH+CH=BC(H nằm giữa B và C)
hay BC=9+16=25cm
Ta có: \(AB^2+AC^2=15^2+20^2=625\)
\(BC^2=25^2=625\)
Do đó: \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Dễ vl