Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20cm
Vậy: AB=15cm; AC=20cm
Ta có: BH+CH=BC(H nằm giữa B và C)
hay BC=9+16=25cm
Ta có: \(AB^2+AC^2=15^2+20^2=625\)
\(BC^2=25^2=625\)
Do đó: \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a: BC=25cm
\(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Hai câu còn lại bạn ghi lại đề phần BH đi bạn
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Câu 1 :
Xét \(\Delta AHC\) có :
\(\widehat{H}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta AHC\) vuông tại H
Ta có : \(AC^2=AH^2+HC^2\) (Định lí PYTAGO)
=> \(AC^2=12^2+18^2=325\)
=> \(AC=\sqrt{325}\)
Xét \(\Delta ABH\) có :
\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta ABH\) vuông tại H
Ta có : \(AB^2=AH^2+BH^2=12^2+9^2=225\)
=> \(AB=\sqrt{225}=15\left(cm\right)\)
Câu 2 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=24^2+18^2=900\) (Định lí PITAGO)
=> \(AC=\sqrt{900}=30\left(cm\right)\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=24^2+32^2=1600\) (định lí PITAGO)
=> \(AB=\sqrt{1600}=40\left(cm\right)\)
Câu 3 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=2^2+4^2=20\) (Định lí PITAGO)
=> \(AC=\sqrt{20}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=2^2+1^2=5\)(Định lí PITAGO)
=> \(AB=\sqrt{5}\)
Câu 4 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=\left(\sqrt{3}\right)^2+4^2=19\)(Định lí PITAGO)
=> \(AC=\sqrt{19}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=\left(\sqrt{3}\right)^2+1^2=4\)(Định lí PITAGO)
=> \(AB=\sqrt{4}=2\)
Câu 5 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=1^2+1^2=1\)(Định lí PITAGO)
=> \(AC=\sqrt{1}=1\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=1^2+1^2=1\) (Định lí PITAGO)
=> \(AB=\sqrt{1}=1\)
CÁC CÂU SAU LÀM TƯƠNG TỰ NHÉ !
1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
2: Ta có: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=64\)
=>\(HA=\sqrt{64}=8\left(cm\right)\)
3: Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AH
4: Xét ΔAHM có
AE là đường trung tuyến
AE là đường cao
Do đó: ΔAHM cân tại A
=>AM=AH
Ta có: ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN
=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)
Ta có: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM
=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)
Ta có: AM=AH
AH=AN
Do đó: AM=AN
Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)
=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)
Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ
=>góc MAN=180 độ
=>\(2\cdot\widehat{BAC}=180^0\)
=>\(\widehat{BAC}=90^0\)
Trả lời dùm minh với, mình đang vội lắm
Ai nhanh nhất mình k cho