Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow S=2^{101}-1\)
\(\Rightarrow S=2^{101}-1< 2^{122}\)
S = 1 + 2 + 2^2 +......+ 2^100
2S = 2 x (1 + 2 + 2^2 +.......+ 2^100)
2S = 2 + 2^2 + 2^3 +....+ 2^100 + 2^101
2S - S = (2 + 2^2 + 2^3 +.....+2^100 + 2^101)-(1+2+2^2+.....+2^100)
S = 2^101 - 1
=> 2^101-1 < 2^122
\(A=7^3+7^4+7^5+7^6+...+7^{97}+7^{98}\)
\(=\left(7^3+7^4\right)+\left(7^5+7^6\right)+....+\left(7^{97}+7^{98}\right)\)
\(=7^3\left(1+7\right)+7^5\left(1+7\right)+...+7^{97}\left(1+7\right)\)
\(=\left(1+7\right)\left(7^3+7^5+...+7^{97}\right)\)
\(=8\left(7^3+7^5+...+7^{97}\right)⋮8\)
Vì A có: 96 số hạng nên ta chia A thành 48 nhóm 1 nhóm có 2 số hạng
\(A=7^3+7^4+7^5+7^6+...........+7^{97}+7^{98}\)
\(A=\left(7^3+7^4\right)+\left(7^5+7^6\right)+...........+\left(7^{97}+7^{98}\right)=7^3\left(1+7\right)+7^5\left(1+7\right).....+7^{97}\left(1+7^{ }\right)\)
\(A=7^3.8+7^5.8+.......+7^{97}.8=8\left(7^3+7^5+........+7^{97}\right)⋮8\left(ĐPCM\right)\)
\(12^{18}=4^{18}.3^{18}=\left(2^2\right)^{18}.3^{18}=2^{36}.3^{18}\)
\(27^{16}.16^9=\left(2^4\right)^9.\left(3^3\right)^{16}=2^{36}.3^{48}\)
\(\Rightarrow27^{16}.16^9>12^{18}\)
= (33)5 : ( 34)3
= 315 : 312
= 33
thank bạn nha