K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

\(S=\left(5+5^2+5^3+5^4\right)+...+\left(5^{93}+5^{94}+5^{95}+5^{96}\right).\)

\(S=5\left(1+5+5^2+5^3\right)+...+5^{93}\left(1+5+5^2+5^3\right)\)

\(S=156\left(5+5^5+5^9+...+5^{89}+5^{93}\right)\) chia hết cho 156

13 tháng 10 2016

có số 1 mới làm dc

6 tháng 4 2017

Câu hỏi của Phương Thảo Trần - Toán lớp 0 | Học trực tuyến

21 tháng 11 2018

Bài 1 

1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009

=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)

=1+0+0+....+0

=1

21 tháng 11 2018

Bài 2

Ta có: S=3^1+3^2+...+3^2015

3S=3^2+3^3+...+3^2016

=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)

2S=3^2016-3^1

S=\(\frac{3^{2016}-3}{2}\)

Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)

=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)

=> S có 2 tận cùng 4 hoặc 9

mà S có số hạng lẻ => S có tận cùng là 9

Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016

10 tháng 5 2017

phần a:

nhóm S thành 50 nhóm mỗi nhóm 2 số ta có:

\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=3\left(2+2^3+...+2^{99}\right)\)

Nhóm biểu thức trong ngoặc thành 25 nhóm mỗi nhóm 2 số ta có:

\(\Rightarrow S=3\left[2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\right]\)

\(\Rightarrow S=15\left(2+2^5+...+12^{97}\right)⋮15\)

10 tháng 5 2017

phẫn c : 

ta có : S=2^1+2^2+...+2^100

2S=4+2^1+2^2+...+2^99

2S-S=(4+2^1+2^2+...+2^99)-(2^1+2^2+...+2^100)

S= 4-2^100

phẫn b : 

ta có : 2100=23x333+1

          =(23)333+21

         =(...8)333+2

         =(...8)+2=(...0)

S=4-(...0)

=>S=(...4)