Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240(p4−1) ⋮ 240 và (q4−1) ⋮ 240(q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240(p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)(p4−1)=(p−1)(p+1)(p2+1)
vì pp là số nguyến tố lớn hơn 55 nên pp là số lẻ
⟹(p−1)(p+1)⟹(p−1)(p+1) là tích của 22 số lẻ liên tiếp nên chia hết cho 88 (1)(1)
Do p>5p>5 nên:
p=3k+1→p−1=3k→p−1 ⋮ 3p=3k+1→p−1=3k→p−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)(2)
mặt khác vì pp là số lẻ nên p2p2 là số lẻ →p2+1→p2+1 là số chẵn nên p2+1 ⋮ 2p2+1 ⋮ 2 (3)(3)
giờ cần chứng minh p4−1 ⋮ 5p4−1 ⋮ 5:
pp có thể có dạng:
p=5k+1→p−1 ⋮ 5p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5kp=5k mà pp là số nguyến tố nên k=1→p=5k=1→p=5 (ko thỏa mãn ĐK)
⟹p4−1 ⋮ 5⟹p4−1 ⋮ 5 (4)(4)
từ (1),(2),(3),(4)(1),(2),(3),(4), suy ra p4−1p4−1 chia hết cho 2.3.5.82.3.5.8 hay p4−1 ⋮ 240p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240q4−1 ⋮ 240
Kết luận.......................
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
Ta có: Vì p là số nguyên tố lớn hơn 3 nên:
p chia 3 dư 1 hoặc p chia 3 dư 2
Nếu p chia 3 dư 1 thì (p - 1) chia hết cho 3
Nếu p chia 3 dư 2 thì (p + 4) chia hết cho 3
\(\Rightarrow\)(p - 1).(p + 4) chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 nên 3 là 1 số lẻ
Nếu p chia 3 dư 1 thì (p+4) chia hết cho 2
Nếu p chia 3 dư 2 thì (p - 1) chia hết cho 2
\(\Rightarrow\)(p-1).(p+4) chia hết cho 2 (2)
Từ (1) và (2) \(\Rightarrow\)(p - 1).(p+4) chia hết cho 6
Ta có: p4-1=(p2)2-1=(p2-1).(p2+1)=(p-1).(p+1).(p2+1)
Vì p là số nguyên tố lớn hơn 5
=>p lẻ
=>p-1 và p+2 là 2 số chẵn liên tiếp
=>(p-1).(p+1) chia hết cho 8
Vì p lẻ=>p2 lẻ=>p2+1 chẵn=>p2+1 chia hết cho 2
=>(p-1).(p+1).(p2+1) chia hết cho 16
=>p4-1 chia hết cho 16(1)
Lại có: p là số nguyên tố lớn hơn 5
=>p không chia hết cho 3
=>p4 chia 3 dư 1
=>p2-1 chia hết cho 3(2)
Mặt khác: p là số nguyên tố lớn hơn 5
=>p có 4 dạng 5k+1,5k+1,5k+3,5k+4
-Với p=5k+1=>p-1 chia hết cho 5=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+2=>p2+1=(5k+2)2-1=(5k)2+2.2.5k+22+1=5.5.k2+5.4.k+5 chia hết cho 5
=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+3=>p2-1=(5k+3)2-1=(5k)2+2.3.5k+32+1=5.5.k2+5.6.k+10 chia hết cho 5
=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+4=>p+1 chia hết cho 5=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
=>p4-1 chia hết cho 5(3)
Tư (1),(2) và (3) ta thấy:
p4-1 chia hết cho 16,3,5
mà (16,3,5)=1
=>p4-1 chia hết cho 16.3.5
=>p4-1 chia hết cho 240
=>ĐPCM
Vì p là số nguyên tố lớn hơn 3 => p = 3k + 1 hoặc 3k + 2 ( k thuộc N* )
+ Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => 3k + 3 là hợp số ( Loại )
+ Nếu p = 3k + 2 => p + 2 = 3k + 2 + 2 = 3k + 4 là số nguyên tố
=> p + 1 = 3k + 2 + 1 = 3k + 3 => 2( 3k + 3 ) = 6k + 6 chia hết cho 6
mk nha mk cx hk chắc mk đúng mk ms lớp 6 thôi
Vì 9 là SNT ( số nguyên tố ) lớn 3
=> p khi chia cho 3 có 2 dạng:
p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )
+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1
= 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3
=> 2p + 1 là hợp số ( loại )
Vậy: p = 3k + 2
=> 4p + 1 = 4 . ( 3k + 2 ) + 1
= 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3
=> 4p + 1 là hợp số ( điều phải chứng minh )
Kết luận:
p nguyên tố > 3
=> p chia 3 dư 1,2
=> 2p + 1 chia 3 dư 0, 2
Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2
=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3
=> 4p+1 là hợp số
Ta có: $p$ là số nguyên tố $>3$
suy ra $p\not\vdots 3$
Số chính phương chia 3 dư 0 hoặc 1 mà $p^2$ là số chính phương
$p^2\not\vdots 3$ suy ra $p^2 \equiv 1 (mod 3) $
Mà $2009 \equiv 2 (mod 3)$
nên $p^2+2009 \equiv 3 \equiv 0 (mod 3)$
Hay $p^2+2009 \vdots 3$
mà $p^2+2009>3$ nên $p^2+2009$ là hợp số
bạn hãy vào link sau nè:
https://olm.vn/hoi-dap/detail/17061171825.html
sẽ có lời giải đáp
Tham khảo!
https://olm.vn/hoi-dap/detail/20342068078.html