K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Vì 9 là SNT ( số nguyên tố ) lớn 3

=> p khi chia cho 3 có 2 dạng: 

     p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )

+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1

                                          = 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3

=> 2p + 1 là hợp số ( loại )

Vậy: p = 3k + 2

=> 4p + 1 = 4 . ( 3k + 2 ) + 1

               = 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3

=> 4p + 1 là hợp số ( điều phải chứng minh )

Kết luận: 

28 tháng 12 2017

p nguyên tố > 3

=> p chia 3 dư 1,2

=> 2p + 1 chia 3 dư 0, 2

Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2

=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3

=> 4p+1 là hợp số

28 tháng 12 2017

p nguyên tố > 3

=> p không chia hết cho 3

=> p có dạng 3k+1 hoặc 3k+2

* p = 3k+1

=> 2p+1 = 2(3k+1) + 1 = 6k + 3 chia hết cho 3 là hợp số

==> p = 3k+2

=> 4p+1 = 4(3k+2) + 1 = 12k+9 cha hết cho 3 là hợp số

Vậy ................

19 tháng 7 2016

p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2

Nếu p=3k+1 => 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số (loại)

=>p=3k+2

=>4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (đpcm)

19 tháng 7 2016

Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.

   Ta chia làm 2 trường hợp:

   - TH1: p = 3k + 1

   => 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số. 

   => TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.

   - TH2: p = 3k + 2

   => 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.

   => TH này được chọn vì đúng theo yêu cầu của đề bài.

   => 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.

Vậy 4p + 1 là hợp số (ĐPCM).

   

19 tháng 7 2016

Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.

   Ta chia làm 2 trường hợp:

   - TH1: p = 3k + 1

   => 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số. 

   => TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.

   - TH2: p = 3k + 2

   => 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.

   => TH này được chọn vì đúng theo yêu cầu của đề bài.

   => 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.

Vậy 4p + 1 là hợp số (ĐPCM).

19 tháng 7 2016
Ta có 
 p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 +) Với p=3k+1

Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) 

=>\(p\ne3k+1\)

+) Với p=3k+2

Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 

Vì \(p\ne3k+1\) nên ta chộn trường hợp này

=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3)    (chia hết cho 3)

Vậy 4p+1 là hợp số 

=>đpcm

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại

Xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2, trong 3 số này có 1 số chia hết cho 3

Do p nguyên tố > 3 => p không chia hết cho 3 => 4p không chia hết cho 3

2p + 1 cũng là số nguyên tố > 3 => 2p + 1 không chia hết cho 3 => 2.(2p + 1) hay 4p + 2 không chia hết cho 3

=> 4p + 1 chia hết cho 3

Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số

18 tháng 8 2018

vì p là SNT lớn hơn 3 => p=3k+1 hoặc p=3k+2 (k thuộc N*)

nếu p=3k+1

thì 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(KTM)

nếu p=3k+2

thì 2p+1=2.(3k+2)+1=6k+4+1=6k+5 ko chia hết cho 3(TM)

=> p=3k+2

khi đó 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3.vậy nếu p là SNT lớn hơn 3 thì 4p+1 lag hợp số

bài này toán nâng cao l6 nha

27 tháng 1 2017

Vì p là số nguyên tố lớn hơn 3 => p = 3k + 1 hoặc 3k + 2 ( k thuộc N* )

+ Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => 3k + 3 là hợp số ( Loại )

+ Nếu p = 3k + 2 => p + 2 = 3k + 2 + 2 = 3k + 4 là số nguyên tố

                         => p + 1 = 3k + 2 + 1 = 3k + 3 => 2( 3k + 3 ) = 6k + 6 chia hết cho 6

mk nha mk cx hk chắc mk đúng mk ms lớp 6 thôi

6 tháng 9 2016

Mình nghĩ là đề bài thế này : Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P-1).(P+1) chia hết cho 24
                      BÀI GIẢI
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 và 3 
Ta có : P không chia hết cho 2 
=> P - 1 và P + 1 là 2 số chẵn liên tiếp => ( P - 1 )( P + 1 ) chia hết cho 8 ( 1 )'
Mặt khác : P không chia hết cho 3 
Nếu P = 3k + 1 thì P - 1 chia hết cho 3k => ( P - 1 )( P + 1 ) chia hết cho 3 ( 2 )
Từ ( 1 ) và ( 2 ) => ( P - 1 )( P + 1 ) chia hết cho 8 và chia hết cho 3 mà ( 8 ; 3 ) = 1 => ( P - 1 )( P + 1 ) chia hết cho 24.