Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A= x(x+3)(x+1)(x+2)
=(x^2+3x)(x^2+3x+2)
Đặt x^2+3x+1 là t
A=(t-1)(t+1)
=t^2-1
Nhận xét:t^2 lớn hơn hoặc bằng 0 nên A lớn hơn hoặc bằng 1
Dấu "=" xảy ra khi và chỉ khi t=0
Suy ra: x^2+3x+1=0
.........
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)
=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)
Dấu "=" xảy ra khi \(x=\sqrt{2}+1\)
c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)
\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4
`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`
Vì `(x+1/2)^2 >= 0` với mọi `x`
`=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`
`=>` Biểu thức Min `=3/4<=>x=-1/2`
_____________
`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`
Vì `(x+1)^2 >= 0` với mọi `x`
`=>(x+1)^2-12 >= -12` với mọi `x`
`=>` Biểu thức Min `=-1/2<=>x=-1`
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)
Dấu '=' xảy ra khi x=1/2
A= x(x+5)+3(x+5)+4 =x2+5x+3x+15+4 =x2+8x+19 =x2+2.4.x+16+3=(x+4)2+3
ta thay : (x+4)2>hoac = 0 suy ra Amin khi va chi khi x+4=0 suy ra x=-4
Vay Amin = 3 khi x=-4
B=x2-4x+4+y2-8y+16-14 =(x-2)2+(y-4)2-14
vi (x-2)2 va (y-4)2 lon hon hoac bang 0 suy ra Bmin khi va chi khi (x-2)2=0 va (y-4)2=0
tinh ra nhu cau a (ban tu lam nhe)
vay Bmin=-14 va x=2 va y=4
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
Ta có : A = x(x + 1)(x + 2)(x + 3)
=> A = [x(x + 3)].[(x + 1)(x + 2)]
=> A = (x2 + 3x) . (x2 + 3x + 2)
Đặt a = x2 + 3x + 1
Khi đó A = (a - 1)(a + 1)
=> A = a2 - 1
=> A = x2 + 3x + 1 - 1
=> A = x2 + 3x
=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\)
\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)
Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)
Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)
Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)