Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian xe máy đi từ A đến B là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B về A là: \(\dfrac{x}{45}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{9x}{360}-\dfrac{8x}{360}=\dfrac{90}{360}\)
\(\Leftrightarrow9x-8x=90\)
hay x=90(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 90km
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{40}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)(tmđk)
Vậy sAB là: 90km
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{14}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)
Vậy: Độ dài quãng đường AB là 90km
Đổi 40 phút =2/3 giờ
Vận tốc lúc về là: \(40.1,2=48\) (km/h)
Gọi độ dài quãng đường AB là x (km) với x>0
Thời gian người đó đi từ A đến B: \(\dfrac{x}{40}\) giờ
Thời gian người đó đi từ B về A: \(\dfrac{x}{48}\) giờ
Do thời gian về ít hơn thời gian đi là 2/3 giờ nên ta có pt:
\(\dfrac{x}{40}-\dfrac{x}{48}=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{x}{240}=\dfrac{2}{3}\)
\(\Rightarrow x=160\left(km\right)\)
Bạn tách ra nhá
Thôi, mình làm câu 1:
Vì thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
V xuôi/V ngược = T ngược/T xuôi = 40/30 = 4/3
Ta có sơ đồ:
T xuôi: |-----|-----|-----| 30 phút
T ngược:|-----|-----|-----|-----|
T xuôi là:
30 : (4 - 3) x 3 = 90 phút = 1,5 giờ
Quãng đường là:
1,5 x 40 = 60km
Đ/s:..
Vì quãng đường AB không đổi nên ta có :Đổi: \(45ph=\dfrac{3}{4}h\)
Gọi thời gian người đó đi từ A đến B là x (h) (x > 0)
Thời gian người đó từ B về A là
\(x-\dfrac{3}{4}\left(h\right)\)
Quãng đường người đó đi từ A đến B là 30x (km)
Quãng đường người đó đi từ A đến B là:
\(40.\left(x-\dfrac{3}{4}\right)=40x-30\left(km\right)\)
Vì quãng đường AB không đổi nên ta có :\(40x-30=30x\Leftrightarrow10x=30\Leftrightarrow x=3\left(h\right)\)Độ dài quãng đường AB là:
\(30.3=90\left(km\right)\)Gọi quãng đường AB là \(x\left(x>0\right)\left(km\right)\)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B đến A là :\(\dfrac{x}{50}\left(h\right)\)
Do t/g về it ít hơn t/g đi là 30p \(\left(=\dfrac{1}{2}h\right)\)nên ta có :
\(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{50x-40x-1000}{2000}=0\)
\(\Leftrightarrow10x=1000\)
\(\Leftrightarrow x=100\left(n\right)\)
Vậy ....
Đổi 30 phút = \(\dfrac{1}{2}\) (giờ)
Gọi x (km) là quãng đường từ A đến B (ĐK : x > 0)
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 30 phút nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow7x=60\)
\(\Leftrightarrow x=\dfrac{60}{7}\) (N)
Vậy : quãng đường AB dài \(\dfrac{60}{7}\left(km\right)\)
đổi 12 phút = 0,2 giờ
gọi độ dài quãng đường AB là: x (đơn vị:km,x>0)
=> thời gian mà xe máy đi từ A đến B là: `x/35` (giờ)
=> thời gian mà xe máy đi từ B đến A là: `x/40` (giờ)
vì thời gian về ít hơn thời gian đi 12 phút nên ta có phương trình sau
\(\dfrac{x}{35}-\dfrac{x}{40}=0,2\\ < =>x\cdot\left(\dfrac{1}{35}-\dfrac{1}{40}\right)=0,2\\ < =>x\cdot\dfrac{1}{280}=0,2\\ < =>x=56\left(tm\right)\)
vậy độ dài quãng đường AB là 56km
\(12p=0,2h\)
Gọi \(x\left(km\right)\) là quãng đường AB \(\left(x>0\right)\)
Theo bài, ta có pt :
\(\dfrac{x}{35}=\dfrac{x}{40}+0,2\)
\(\Leftrightarrow\dfrac{x}{35}-\dfrac{x}{40}-0,2=0\)
\(\Leftrightarrow\dfrac{40x-35x-280}{1400}=0\)
\(\Leftrightarrow5x=280\)
\(\Leftrightarrow x=56\left(tmdk\right)\)
Vậy quãng đường AB dài 56km
Gọi quãng đường AB là x (km)
Thời gian xe máy đi từ A đến B là: x/40(h)
Thời gian xe máy đi từ B về A là: x/50(h)
Đổi 45 phút=3/4 h
Ta có phương trình:
x/40 -x/50 = 3/4
=> 5x - 4x = 150
<=> x = 150
Vậy quãng đường AB dài 150 km
Gọi quãng đường AB là x (km)
Thời gian xe máy đi từ A đến B là: x/40(h)
Thời gian xe máy đi từ B về A là: x/50(h)
Đổi 45 phút=3/4 h
Ta có phương trình:
x/40 -x/50 = 3/4
=> 5x - 4x = 150
<=> x = 150
Vậy quãng đường AB dài 150 km
Đổi 40 phút = 2/3 giờ
Gọi độ dài quãng đường AB là x(km) với x>0
Vận tốc lúc về của người đó là: \(40.1,2=48\) (km/h)
Thời gian đi từ A đến B: \(\dfrac{x}{40}\) giờ
Thời gian từ B về A: \(\dfrac{x}{48}\) giờ
Do thời gian về ít hơn thời gian đi 2/3 giờ nên ta có pt:
\(\dfrac{x}{40}-\dfrac{x}{48}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{x}{240}=\dfrac{2}{3}\)
\(\Rightarrow x=160\left(km\right)\)