K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được

13 tháng 1 2022

nguu dell cần cũng được

 

17 tháng 6 2017

Gọi s là chiều dài đoạn đường AB

Thời gian đi nửa đoạn đường đầu tiên là

\(t_1=\dfrac{\dfrac{s}{2}}{v_1}=\dfrac{s}{2v_1}\)

Với \(v_1=20\) km/h

Gọi \(t_2\) là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian \(\dfrac{t_2}{2}\)

Người đó đi với vận tốc

\(v_2=10\) km/h;

Do đó đoạn đường đi được trong thời gian này là:

\(v_2.\dfrac{t_2}{2}\)

. Và cuối cùng trong thời gian \(\dfrac{t_2}{2}\)

Còn lại người đó dắt bộ với vận tốc

\(v_3=5\) km/h;

Do đó đoạn đường đi được trong thời gian này là

\(v_3.\dfrac{t_2}{2}\)

Như vậy ta có:

\(\dfrac{S}{2}=v_2.\dfrac{t_2}{2}+v_3.\dfrac{t_2}{2}\)

\(\Rightarrow t_2=\dfrac{S}{v_2+v_3}\). Thời gian đi hết toàn bộ quãng đường AB là:

\(t=t_1+t_2=\dfrac{S}{2v_1}+\dfrac{S}{v_2+v_3}=S\left(\dfrac{1}{2v_1}+\dfrac{1}{v_2+v_3}\right)\)

Từ đó, vận tốc trung bình trên cả đoạn đường AB là:

\(v=\dfrac{s}{t}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{v_2+v_3}}\)

Thay số ta được

\(v=\dfrac{40.15}{40+25}\approx10,9\) km/h

8 tháng 4 2023

t2/2 là sao ạ

 

24 tháng 2 2016

Gọi $s$ là chiều dài đoạn đường $AB$.

Thời gian đi nửa đoạn đường đầu tiên là:$t_1=\frac{\frac{s}{2} }{v_1}=\frac{s}{2v_1}$, với $v_1=20$km/h

Gọi $t_2$ là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian $\frac{t_2}{2}$ 

Người đó đi với vận tốc $v_2=10$ km/h; do đó đoạn đường đi được trong thời gian này là: $v_2.\frac{t_2}{2}$. Và cuối cùng trong thời gian $\frac{t_2}{2} $

Còn lại người đó dắt bộ với vận tốc $v_3=5$ km/h; do đó đoạn đường đi được trong thời gian này là $v_3.\frac{t_2}{2} $. Như vậy ta có: $\frac{s}{2}=v_2.\frac{t_2}{2}+v_3.\frac{t_2}{2} $,

Suy ra $t_2=\frac{s}{v_2+v_3} $. Thời gian đi hết toàn bộ quãng đường $AB$ là:

$t=t_1+t_2=\frac{s}{2v_1}+\frac{s}{v_2+v_3}=s\left ( \frac{1}{2v_1}+\frac{1}{v_2+v_3} \right ) $

Từ đó, vận tốc trung bình trên cả đoạn đường $AB$ là:

$v=\frac{s}{t}=\frac{1}{\frac{1}{2v_1}+\frac{1}{v_2+v_3} } $

Thay số ta được $v=\frac{40.15}{40+25}\approx 10,9$km/h.

23 tháng 10 2016

b biết làm cách 2 ko? viết về ẩn t2 í. t đang cần làm cách đó gấp

 

20 tháng 11 2023

loading...
 


 

26 tháng 8 2021

\(=>vtb=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{v1}+\dfrac{\dfrac{1}{2}S}{v2}}=\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{2v2}}=\dfrac{S}{\dfrac{S\left(2v2+40\right)}{80v2}}=\dfrac{80v2}{2v2+40}=15\)

\(=>v2=12km/h\)

8 tháng 11 2018

Thời gian người đó đi trên nửa đoạn đường đầu của đoạn đường MN là :

\(t_1=\dfrac{s_1}{v_1}=\dfrac{\dfrac{1.}{2}s}{20}=\dfrac{s}{40}\left(h\right)\)

Đoạn đường đi thứ 1 trong nửa thời gian thứ hai là : \(s_2=v_2.\dfrac{t_2}{2}=5t_2\left(km\right)\)

Đoạn đường đi thứ 2 trong nửa thời gian thứ 2 là : \(s_3=v_3.\dfrac{t_2}{2}=\dfrac{5}{2}t_2\left(km\right)\)

\(s_1+s_2=\dfrac{s}{2}\left(km\right)\)

\(\Leftrightarrow5t_2+\dfrac{5}{2}t_2=\dfrac{s}{2}\)

\(\Leftrightarrow\dfrac{s}{2}=\dfrac{15}{2}t_2\)

\(\Leftrightarrow t_2=\dfrac{s}{15}\)

Vận tốc trung bình là : \(v_{tb}=\dfrac{s}{v}=\dfrac{s}{\dfrac{s}{40}+2.\dfrac{s}{15}}=10,9\left(km\right)\)

Vậy...

16 tháng 12 2021

\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}\Rightarrow10=\dfrac{S_{tổng}}{\dfrac{S_{tổng}}{15}+\dfrac{S_{tổng}}{v_2}}=\dfrac{S_{tổng}}{S_{tổng}\left(\dfrac{1}{15}+\dfrac{1}{v_2}\right)}=\dfrac{1}{\dfrac{1}{15}+\dfrac{1}{v_2}}\)

\(\Rightarrow\dfrac{1}{v_2}=\dfrac{1}{10}-\dfrac{1}{15}=\dfrac{1}{30}\Rightarrow v_2=30\left(\dfrac{km}{h}\right)\)

19 tháng 6 2017

Gọi 2S là độ dài cả quãng đường

=> S là độ dài nửa quãng đường

Gọi 2t là thời gian đi còn lại

=> t là nửa thời gian đi còn lại

Thời gian đi quãng đường đầu là

\(t_1=\dfrac{S}{20}\left(h\right)\)

Thời gian đi còn lại là

\(S=t\left(10+5\right)=>t=\dfrac{S}{15}=>2t=\dfrac{2S}{15}\left(h\right)\)

Vận tốc trung bình

\(v_{tb}=\dfrac{2s}{\dfrac{s}{20}+\dfrac{2s}{15}}=\dfrac{2s}{\dfrac{11s}{60}}\approx10,9\left(\dfrac{km}{h}\right)\)