Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xm+4+xm+3-x-1
=(xm+4-x)+(xm+3-1)
=x(xm+3-1)+(xm+3-1)
=(x+1)(xm+3-1)
Với x=-2 ta có:... bn tự thay
b)x6-x4+2x3+2x2=x6-2x5+2x4+2x5-4x4+4x3+x4-2x3+2x2
=x4(x2-2x+2)+2x3(x2-2x+2)+x2(x2-2x+2)
=(x4+2x3+x2)(x2-2x+2)
=[x2(x2+2x+1)](x2-2x+2)
=x2(x+1)2(x2-2x+2)
Với x=-2 bn tự thay nhé h mk bận
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
tr 10h à còn sớm
P=x2 - 2x + 5
=x2-2x+1+4
=(x-1)2+4
Ta thấy:\(\left(x-1\right)^2+4\ge0+4=4\)
Dấu = khi x=1
Vậy Pmin=4 <=>x=1
Q= 2x2 -6x
\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Ta thấy:\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2}=-\frac{9}{2}\)
Dấu = khi x=3/2
Vậy Qmin=-9/2 <=>x=3/2
P = x2 - 2x + 5 = x(x - 2) + 5 nhỏ nhất khi x(x - 2) nhỏ nhất .
Xét x(x - 2) < 0 (để nhỏ nhất) thì x và x - 2 khác dấu mà x > x - 2 nên x > 0 > x - 2 => 2 > x > 0 => x = 1 => x(x - 2) = -1
Vậy P min = -1 + 5 = 4
Q = 2x2 - 6x = 2x(x - 3) nhỏ nhất khi x(x - 3) nhỏ nhất
Xét x(x - 3) < 0 (để nhỏ nhất) thì x và x - 3 khác dấu mà x > x - 3 nên x > 0 > x - 3 => 3 > x > 0 => x = 1;2
Ta thấy x(x - 3) = -2 tại x = 1 và x = 2 nên [x(x - 3)]min = -2 => Qmin = -2.2 = -4
Lời giải:
1.
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$
$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$
2.
$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$
3.
$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$
$=(x-1)(x^2+3x+1)$
\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)
\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)
\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)
\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)
\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)
-Đặt \(a=\dfrac{1}{x+2}\) thì:
\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)
\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)
\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)
A = 2\(x\) - \(x^2\) - 4
A = -(\(x^2\) - 2\(x\) + 1) - 3
A = - (\(x-1\))2 - 3
Vì (\(x-1\))2 ≥ 0 ⇒ -(\(x\) - 1)2 ≤ 0 ⇒ -( \(x\) - 1)2 - 3 ≤ - 3
Amax = -3 ⇔ \(x\) - 1 = 0 ⇔ \(x\) = 1
Vậy giá trị lớn nhất của biểu thức là 0 xảy ra khi \(x\) = 1
B = - \(x^2\) - 4\(x\)
B = -( \(x^2\) + 4\(x\) + 4) + 4
B = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ - (\(x\) + 2)2 ≤ 0 ⇒ -(\(x+2\))2 + 4 ≤ 0
Bmax = 4 ⇔ \(x+2=0\Rightarrow x=-2\)
Kết luận giá trị lớn nhất của biểu thức là 4 xảy ra khi \(x\) = - 2
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
-Em cảm ơn thầy nhiều ạ!