Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
\(1;a,A=x^2+20x+101\)
\(A=x^2+2.10x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -10
Vậy Min A = 1 <=> x = -10
P = x2 + y2 - 2x + 6y + 12 = x2 + y2 - 2x + 6x + 1 + 9 + 2
=> P = (x2 - 2x + 1) + (y2 + 6y + 9) + 2
=> P = (x - 1)2 + (y + 3)2 + 2 \(\ge\)2
Đẳng thức xảy ra khi: (x - 1)2 = 0 và (y + 3)2 = 0 <=> x = 1 và y = -3
Vậy GTNN của P là 2 khi x = 1 và y = -3.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(1.\) Hổ báo !?
\(M=x^2+5y^2-2xy+6x-18y+50\)
\(=x^2-2xy+y^2+6x-6y+9+4y^2-12y+9+32\)
\(=\left(x-y\right)^2+6\left(x-y\right)+9+\left(2x-3\right)^2+32\)
\(M=\left(x-y+3\right)^2+\left(2x-3\right)^2+32\)
Mà \(\left(x-y+3\right)^2\ge0\) và \(\left(2x-3\right)^2\ge0\) với mọi \(x,y\) nên \(M\ge32>0\)
Vậy, biểu thức \(M\) luôn dương với mọi giá trị của \(x,y\)
Bài 2 không hổ báo lắm nên tự xử nha
2/ (x2 - 4).3 - (7x - 10).3 = (x2 - 7x + 6).3
=> (x2 - 4).3 - (7x - 10).3 - (x2 - 7x + 6).3 = 0
=> 3.(x2 - 4 - 7x + 10 - x2 + 7x - 6) = 0
=> 0x = 0
=> có vô số x thỏa phương trình trên
1/ đề bị sao ấy, giải không ra
A = 2\(x\) - \(x^2\) - 4
A = -(\(x^2\) - 2\(x\) + 1) - 3
A = - (\(x-1\))2 - 3
Vì (\(x-1\))2 ≥ 0 ⇒ -(\(x\) - 1)2 ≤ 0 ⇒ -( \(x\) - 1)2 - 3 ≤ - 3
Amax = -3 ⇔ \(x\) - 1 = 0 ⇔ \(x\) = 1
Vậy giá trị lớn nhất của biểu thức là 0 xảy ra khi \(x\) = 1
B = - \(x^2\) - 4\(x\)
B = -( \(x^2\) + 4\(x\) + 4) + 4
B = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ - (\(x\) + 2)2 ≤ 0 ⇒ -(\(x+2\))2 + 4 ≤ 0
Bmax = 4 ⇔ \(x+2=0\Rightarrow x=-2\)
Kết luận giá trị lớn nhất của biểu thức là 4 xảy ra khi \(x\) = - 2