K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

ĐKXĐ:\(x>-3\)

\(\sqrt{x}+\sqrt{x+3}=x+4\)\(\Leftrightarrow x+x+3+2\sqrt{x}\sqrt{x+3}=\left(x+4\right)^2\)

\(\Leftrightarrow2x+3+2\sqrt{x^2+3x}=x^2+8x+16\)

\(\Leftrightarrow x^2+8x+16-2x-3-2\sqrt{x^2+3x}=0\)

\(\Leftrightarrow\left(x^2+3x-2\sqrt{x^2+3x}+1\right)+3x+12=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3x}-1\right)^2+3\left(x+4\right)=0\)

Ta thấy:\(\hept{\begin{cases}\left(\sqrt{x^2+3x}-1\right)^2\ge0\\x>-3\Leftrightarrow3\left(x+4\right)>0\end{cases}}\)

\(\Rightarrow\left(\sqrt{x^2+3x}-1\right)^2+3\left(x+4\right)>0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy phương trình vô nghiệm.

1 tháng 9 2020

đk: \(x\ge0\)

Ta có: \(\sqrt{x}+2\sqrt{x+3}=x+4\)

\(\Leftrightarrow\left(x+3\right)-2\sqrt{x+3}+1=\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=\sqrt{x}-1\)

\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=\sqrt{x}-1\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}-1=\sqrt{x}-1\\\sqrt{x-3}-1=1-\sqrt{x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=\sqrt{x}\left(ktm\right)\\\sqrt{x-3}+\sqrt{x}=2\end{cases}}\)

\(\Leftrightarrow x-3+x+2\sqrt{x\left(x-3\right)}=4\)

\(\Leftrightarrow2\sqrt{x^2-3x}=7-2x\)

\(\Leftrightarrow4\left(x^2-3x\right)=\left(7-2x\right)^2\)

\(\Leftrightarrow4x^2-12x=49-28x+4x^2\)

\(\Leftrightarrow16x=49\)

\(\Rightarrow x=\frac{49}{16}\)

2 tháng 9 2020

\(( \sqrt{x+3}-1)^2\) chứ bạn.

với cả là \(\sqrt{x+3}\)  mà   có phải \(\sqrt{x-3} \)  đâu

 
29 tháng 5 2021

ĐK: \(x\le3\)

Đặt \(a=\sqrt{3-x}\left(a\ge0\right)\) \(\Leftrightarrow3-a^2=x\)

Pttt: \(x^3+\left(3-a^2\right)\left(1+a\right)=4a\)

\(\Leftrightarrow x^3-a^3-a^2-a+3=0\)

\(\Leftrightarrow x^3-a^3+\left(3-a^2\right)-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2\right)+\left(x-a\right)=0\)

\(\Leftrightarrow x-a=0\) \(\Leftrightarrow x=a\) \(\Leftrightarrow x=\sqrt{3-x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=3-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1+\sqrt{13}}{2}\)(thỏa)

Vậy...

9 tháng 3 2022

Mọi người ơi, giúp em với ạ!

 

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

28 tháng 2 2022

Bo thi:>

undefined

28 tháng 2 2022

+ đk x > 0 , x khác 1

16 tháng 2 2022

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

$A=1+\frac{1}{\sqrt{x}-3}$

Để $A$ max thì $\sqrt{x}-3$ phải dương và nhỏ nhất. 

Với $x$ nguyên, để $\sqrt{x}-3$ dương và nhỏ nhất thì $x=10$

Khi đó, $A_{\max}=1+\frac{1}{\sqrt{10}-3}=4+\sqrt{10}$

------------------

$B=1+\frac{1}{\sqrt{x}-2}$.

Lập luận tương tự phần a, ta thấy với $x$ nguyên không âm thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất tại $x=5$

$\Rightarrow B_{\max}=1+\frac{1}{\sqrt{5}-2}=3+\sqrt{5}$

AH
Akai Haruma
Giáo viên
16 tháng 7 2023

Lời giải:

Lần sau bạn nhớ ghi đầy đủ đề. $ABC$ là tam giác vuông tại $A$.

$\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow AC=\frac{4AB}{3}=\frac{4.15}{3}=20$ (cm)

Áp dụng định lý Pitago:

$y=BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25$ (cm) 

$S_{ABC}=AB.AC:2=AH.BC:2$

$\Rightarrow AB.AC=AH.BC$

$\Rightarrow x=AH=\frac{AB.AC}{BC}=\frac{15.20}{25}=12$ (cm)

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
Để pt có 2 nghiê pb thì:

$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)

Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)

\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)

\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

3 tháng 4 2022

\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)

Vậy $m=2$