Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x2 -4+3x2= 4x2+4x+1+2x
<=> 4x^2 - 4= 4x^2 +6x +1
<=> - 4=6x +1
<=> 6x= -5
<=> x= \(-\frac{5}{6}\)
Câu 1:
a: 5x-2=3x+6
=>5x-3x=2+6
=>2x=8
=>\(x=\dfrac{8}{2}=4\)
b: a<=b
=>-2022a>=-2022b
=>-2022a+2021>=-2022b+2021
Câu 2:
1:
a: ĐKXĐ: x<>1
\(\dfrac{3}{x-1}+1=\dfrac{2x+5}{x-1}\)
=>\(\dfrac{3+x-1}{x-1}=\dfrac{2x+5}{x-1}\)
=>\(2x+5=x+2\)
=>x=-3(nhận)
b: |x-9|=2x-3
=>\(\left\{{}\begin{matrix}2x-3>=0\\\left(2x-3\right)^2=\left(x-9\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\\left(2x-3-x+9\right)\left(2x+3+x-9\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\\left(x+6\right)\left(3x-6\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\\left[{}\begin{matrix}x=-6\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)
=>x=2
2:
\(\dfrac{x-3}{2}-\dfrac{3x+2}{4}< \dfrac{1}{3}\)
=>\(\dfrac{6\left(x-3\right)-3\left(3x+2\right)}{12}< \dfrac{4}{12}\)
=>6x-18-9x-6<4
=>-3x-24<4
=>-3x<28
=>\(x>-\dfrac{28}{3}\)
Câu 3:
Gọi độ dài quãng đường AB là x(km)
(Điều kiện: x>0)
Thời gian đi từ A đến B là \(\dfrac{x}{40}\left(giờ\right)\)
Thời gian ô tô đi từ B về A là \(\dfrac{x}{30}\left(giờ\right)\)
Theo đề, ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{2}=9+\dfrac{1}{4}\)
=>\(\dfrac{7x}{120}=8,75\)
=>\(x=8,75:\dfrac{7}{120}=120\cdot1,25=150\left(nhận\right)\)
vậy: Độ dài quãng đường AB là 150km
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=BC/BC=AC/HA
=>AB*AH=AC*HB
b: AH=căn 5^2-3^2=4cm
BI là phân giác
=>IH/HB=IA/AB
=>IH/3=IA/5=(IH+IA)/(3+5)=4/8=1/2
=>IH=1,5cm; IA=2,5cm
11)\(\dfrac{3x+1}{x-5}+\dfrac{2x}{x-5}=\dfrac{3x+2x+1}{x-5}=\dfrac{5x+1}{x-5}\)
12)\(\dfrac{4-x^2}{x-3}+\dfrac{2}{x^2-9}=\dfrac{4-x^2}{x-3}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(4-x^2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2+\left(2-x\right)\left(2+x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
13)
\(\dfrac{3}{4x-2}+\dfrac{2x}{4x^2-1}=\dfrac{3}{2\left(2x-1\right)}+\dfrac{2x}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{3\left(2x+1\right)}{2\left(2x-1\right)\left(2x+1\right)}+\dfrac{2.2x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{6x+3+4x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{10x+3}{2\left(2x-1\right)\left(2x+1\right)}\)
14)
\(\dfrac{2x+1}{2x-4}+\dfrac{5}{x^2-4}=\dfrac{2x+1}{2\left(x-2\right)}+\dfrac{5}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{5.2}{2\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+5x+12}{2\left(x-2\right)\left(x+2\right)}\)
a: Xét ΔABC có BM/BC=BD/BA
nên MD//AC
=>MM' vuông góc AB
=>M đối xứngM' qua AB
b: Xét tứ giác AMBM' có
D là trung điểm chung của AB và MM'
MA=MB
Do đó: AMBM' là hình thoi
a: ĐKXĐ: x<>2; x<>-3
b: \(P+\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{x-4}{x-2}\)
c: Để P=-3/4 thì x-4/x-2=-3/4
=>4x-8=-3x+6
=>7x=14
=>x=2(loại)
e: x^2-9=0
=>x=3 (nhận) hoặc x=-3(loại)
Khi x=3 thì \(P=\dfrac{3-4}{3-2}=-1\)
\(a,=\dfrac{x^3+2x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^3+2x+2x-2-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+3}{\left(x^2+x+1\right)}\)