Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
x^2 - x - y^2 - y
= x^2 - y^2 - x - y
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
x^2 - 2xy + y^2 - z^2
= ( x- y ) ^2 - z^2
= ( x - y - z ) ( x - y + z )
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
a) x\(^2\) - 10x + 9 =0
x\(^2\) - 2x . 5 + 25 = 16
(x - 5)\(^2\) = 4\(^2\)
=> x - 5 = 4
x = 9
Vậy x = 9
b) x\(^2\) - 7x + 6 = 0
x\(^2\) - 2x . 3,5 + 12,25 = 6,25
(x - 3,5)\(^2\) = 2,5\(^2\)
=> x - 3,5 = 2,5
x = 6
Vậy x = 6
c) x\(^2\) + 13x + 12 = 0
x\(^2\) + 2x . 6,5 + 42,25 = 30,25
(x + 6,5)\(^2\) = 5,5\(^2\)
=> x + 6,5 = 5,5
x = -1
Vậy x = -1
d) x\(^2\) - 24x + 23 = 0
x\(^2\) - 2x . 12 + 244 = 121
(x - 12)\(^2\) = 11\(^2\)
=> x - 12 = 11
x = 23
Vậy x = 23
e) 3x\(^2\) + 14x + 8 = 0
3x\(^2\) + 2 . \(\sqrt{3}\)x . \(\frac{7}{\sqrt{3}}\) + \(\frac{49}{3}\) = \(\frac{25}{3}\)
(\(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\))\(^2\) = \(\left(\frac{5}{\sqrt{3}}\right)^2\)
=> \(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\) = \(\frac{5}{\sqrt{3}}\)
=> \(\sqrt{3}\)x = \(\frac{-2}{\sqrt{3}}\)
=> x = \(\frac{-2}{3}\)
ta có : CK vuông góc DB (1)
AH vuông góc DB (2)
từ (1),(2) suy ra AH//CK (*)
xét tam giác vuông AHD và tam giác vuông CBK:ta có
góc H=góc K=90
góc ADH=góc CBK(slt)
suy ra 2 tam giác đó bằng nhau
suy ra AH=CK (*')
từ (*),(*') ta có tứ giác AHCK là hình bình hình
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
hay ΔBED cân tại B
Câu 1:
a: 5x-2=3x+6
=>5x-3x=2+6
=>2x=8
=>\(x=\dfrac{8}{2}=4\)
b: a<=b
=>-2022a>=-2022b
=>-2022a+2021>=-2022b+2021
Câu 2:
1:
a: ĐKXĐ: x<>1
\(\dfrac{3}{x-1}+1=\dfrac{2x+5}{x-1}\)
=>\(\dfrac{3+x-1}{x-1}=\dfrac{2x+5}{x-1}\)
=>\(2x+5=x+2\)
=>x=-3(nhận)
b: |x-9|=2x-3
=>\(\left\{{}\begin{matrix}2x-3>=0\\\left(2x-3\right)^2=\left(x-9\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\\left(2x-3-x+9\right)\left(2x+3+x-9\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\\left(x+6\right)\left(3x-6\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\\left[{}\begin{matrix}x=-6\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)
=>x=2
2:
\(\dfrac{x-3}{2}-\dfrac{3x+2}{4}< \dfrac{1}{3}\)
=>\(\dfrac{6\left(x-3\right)-3\left(3x+2\right)}{12}< \dfrac{4}{12}\)
=>6x-18-9x-6<4
=>-3x-24<4
=>-3x<28
=>\(x>-\dfrac{28}{3}\)
Câu 3:
Gọi độ dài quãng đường AB là x(km)
(Điều kiện: x>0)
Thời gian đi từ A đến B là \(\dfrac{x}{40}\left(giờ\right)\)
Thời gian ô tô đi từ B về A là \(\dfrac{x}{30}\left(giờ\right)\)
Theo đề, ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{2}=9+\dfrac{1}{4}\)
=>\(\dfrac{7x}{120}=8,75\)
=>\(x=8,75:\dfrac{7}{120}=120\cdot1,25=150\left(nhận\right)\)
vậy: Độ dài quãng đường AB là 150km