K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

\(a,P=\dfrac{3\sqrt{a}-3}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\left(a\ge0;a\ne1\right)\\ P=\dfrac{3\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}=\dfrac{3\left(\sqrt{a}+1\right)}{\sqrt{a}}\\ b,a=4\Leftrightarrow\sqrt{a}=2\\ \Leftrightarrow P=\dfrac{3\left(2+1\right)}{2}=\dfrac{9}{2}\)

26 tháng 10 2021

câu 5: 

x=3,6

y=6,4

câu 6: chụp lại đề

câu 7:

a)ĐKXĐ: \(x\ge0\)

\(3\sqrt{x}=\sqrt{12}\\ \Rightarrow9x=12\\ \Rightarrow x=\dfrac{4}{3}\)

b) ĐKXĐ: \(x\ge6\)

\(\sqrt{x-6}=3\\ \Rightarrow x-6=9\\ \Rightarrow x=15\)

26 tháng 10 2021

Câu 5: 

Áp dụng định lý Pi-ta-go ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{6^2+8^2}\\ \Rightarrow BC=10\)

Áp dụng HTL ta có: \(x.BC=AB^2\Rightarrow x.10=6^2\Rightarrow x=3,6\)

Áp dụng HTL ta có: \(x.BC=AC^2\Rightarrow x.10=8^2\Rightarrow x=6,4\)

23 tháng 3 2022

Câu 1:

Ta có 2x - y = 8 => 2x - y + 9 = 17

Mà 3x + y = 17 => 2x - y + 9 = 3x + y

<=> 9 - y = x + y <=> 9 = x + 2y <=> x = 9 - 2y

Mà 2x - y = 8 => 18 - 4y - y = 8 => 18 - 5y = 8 => y = 2 => x = 5

23 tháng 3 2022

Giải giúp e câu 3 đc không ạ, em cảm ơn

26 tháng 10 2021

b: \(BC=\sqrt{89}\left(cm\right)\)

\(\sin\widehat{B}=\dfrac{5\sqrt{89}}{89}\)

\(\Leftrightarrow\widehat{B}\simeq32^0\)

\(\widehat{C}=58^0\)

28 tháng 10 2021

\(BC=\sqrt{8^2+5^2}=\sqrt{89}\approx9,4\left(cm\right)\)

NV
28 tháng 12 2021

24.

\(M=\left|1-\sqrt{3}\right|+1-\sqrt{3}=\sqrt{3}-1+1-\sqrt{3}=0\)

Đáp án A

9.

\(\sqrt{0,4.90\left(2-x\right)^2}=\sqrt{36\left(2-x\right)^2}=6\left|2-x\right|=6\left(x-2\right)=6x-12\)

Đáp án D

28 tháng 10 2021

\(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{-2\sqrt{x}}=\dfrac{2x}{-2\sqrt{x}}=-\sqrt{x}\)

\(P=-\sqrt{x}=-\sqrt{4}=-2\left(đpcm\right)\)

25 tháng 10 2021

Câu 5: 

\(x=\dfrac{6^2}{10}=3.6\left(cm\right)\)

y=10-3,6=6,4(cm)

26 tháng 10 2021

Chi tiết dùm e đc hông ạ

27 tháng 10 2021

a: \(P=\left(\dfrac{3\sqrt{a}-3}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(=\dfrac{3\sqrt{a}+3}{\sqrt{a}}\)