K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

Đặt \(2000=a\)

\(A=a^9\\ B=\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\\ B=\left(a^2-16\right)\left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2.a^2=a^9\\ B=\left(a-8\right)\left(a-6\right)\left(a-4\right)\left(a-2\right)a\left(a+2\right)\left(a+4\right)\left(a+6\right)\left(a+8\right)\\ C=\left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a\\ C< \left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2=a^9\\ D=\left(a-20\right)\left(a-15\right)\left(a-10\right)\left(a-5\right)a\left(a+5\right)\left(a+10\right)\left(a+15\right)\left(a+20\right)\\ D=\left(a^2-400\right)\left(a^2-225\right)\left(a^2-100\right)\left(a^2-25\right)a\\ D< \left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a< a.a^2.a^2.a^2=9\)

Vậy \(D< C< B< A\)

27 tháng 12 2021

Đặt \(2000=a\)

\(A=a^9\\ B=\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\\ B=\left(a^2-16\right)\left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2.a^2=a^9\\ B=\left(a-8\right)\left(a-6\right)\left(a-4\right)\left(a-2\right)a\left(a+2\right)\left(a+4\right)\left(a+6\right)\left(a+8\right)\\ C=\left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a\\ C< \left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2=a^9\\ D=\left(a-20\right)\left(a-15\right)\left(a-10\right)\left(a-5\right)a\left(a+5\right)\left(a+10\right)\left(a+15\right)\left(a+20\right)\\ D=\left(a^2-400\right)\left(a^2-225\right)\left(a^2-100\right)\left(a^2-25\right)a\\ D< \left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a< a.a^2.a^2.a^2=9\)

Vậy \(D< C< B< A\)

27 tháng 12 2021

D nha bạn

NV
1 tháng 8 2021

Nhận xét: ở các góc từ \(0^0\Rightarrow90^0\) thì \(sin\) và tan của 1 góc sẽ tỉ lệ thuận với số đo của góc

Do \(70^0>45^0\Rightarrow tan70^0>tan45^0\Rightarrow tan70^0>1\)

Mà sin, cos của mọi góc đều không lớn hơn 1

\(\Rightarrow\) \(tan70^0\) là giá trị lớn nhất

Chuyển các giá trị cos về sin, ta có: \(cos20^0=sin70^0\) ; \(cos40^0=sin50^0\)

Do đó:

\(sin20^0< sin50^0< sin55^0< sin70^0< tan70^0\)

Hay:

\(sin20^0< cos40^0< sin55^0< cos20^0< tan70^0\)

4 tháng 2 2017

Để ý rằng với các góc nhọn, khi góc lớn lên thì sin của nó lớn lên và chú ý rằng cos 20 °  = sin 70 ° , cos 40 °  = sin 50 °  và do sin α < tg α  từ

sin 20 °  < sin 50 °  (= cos 40 ° ) < sin 55 °  < sin 70 °  (= cos 20 ° ) < tg 70 ° .

Suy ra sin 20 °  < cos 40 ° < sin 55 °  < cos 20 °  <  70 °

15 tháng 6 2018

Để ý rằng với các góc nhọn, khi góc lớn lên thì tang của góc đó lớn lên và chú ý rằng cotg 60 °  = tg 30 ° , cotg 65 °  = tg 25 °  và do sin α < tg α  nên từ

sin 25 °  < tg 25 °  (= cotg 65 ° ) < tg 30 °  (= cotg 60 ° ) < tg 50 °  < tg 70 °

suy ra sin 25 °  < cotg 65 °  < cotg 60 °  < tg 50 °  < tg 70 °

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

2 tháng 6 2021

\(A=\dfrac{\sqrt{60}}{\sqrt{15}}\\=\sqrt{\dfrac{60}{15}}\\=\sqrt{4}=2\)

\(B=\sqrt{\dfrac{72}{15}}:\sqrt{\dfrac{2}{15}}\\=\sqrt{\dfrac{72}{15}}\cdot\sqrt{\dfrac{15}{2}}\\=\sqrt{\dfrac{72}{2}}=6\)

\(C=\left(\sqrt{3}+\sqrt{2}\right)\cdot\left(\sqrt{2}-\sqrt{3}\right)\\=\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\\=2-3=-1\)

a) Ta có: \(2x^2-3x-2=0\)

nên a=2; b=-3 và c=-2

Vì \(x_1\) và \(x_2\) là nghiệm của phương trình \(2x^2-3x-2=0\) nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{3}{2}\\x_1\cdot x_2=-\dfrac{2}{2}=-1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=-1\)

nên \(2\cdot x_1\cdot x_2=-2\)

Ta có: \(\left(x_1+x_2\right)^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow x_1^2+x_2^2+2\cdot x_1\cdot x_2=\dfrac{9}{4}\)

\(\Leftrightarrow x_1^2+x_2^2=\dfrac{9}{4}+2=\dfrac{17}{4}\)