Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp.
Gọi . Sử dụng giả thiết để tìm a, bsuy ra giá trị của z. Sử dụng kết quả này để tìm giá trị của m và kết luận.
Lời giải chi tiết.
Giả sử Khi đó ta có
Để là số thuần ảo thì ta phải có
Từ (1) suy ra thay vào (2) ta nhận được
Nếu m=2 thì (3) vô nghiệm
Nếu m ≠ 2 thì từ (3) suy ra
Vì nên để có duy nhất một số phức z thỏa mãn điều kiện đã cho thì b=0
Ta nhận được a=0 hoặc a=4
với a=4 thì z=a+bi=4. Loại vì là số thuần ảo
vậy a=b=0 ⇒ z=0. Khi đó
Tổng các phần tử của S là 6+(-6)=0
Đáp án A
Đặt z=x+yi
Ta có suy ra tập biểu diễn số phức z là đường tròn tâm M(0;0) bán kính R=1
(m > 0) suy ra tập biểu diễn số phức z là đường tròn tâm N( 3 ;1) bán kính r=m
Để tồn tại duy nhất số phức z thì 2 đường tròn phải tiếp xúc với nhau suy ra MN=R+r
Vậy tập S chỉ có 1 giá trị của m
Chọn D.
Gọi M(a ; b) là điểm biểu diễn số phức z = a + bi
Ta có:
Để là số thuần ảo thì
Tập hợp các điểm M là đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0; 1).
Đặt \(z=x+yi\Rightarrow w=\dfrac{1}{\sqrt{x^2+y^2}-x-yi}=\dfrac{\sqrt{x^2+y^2}-x+yi}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}\)
\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}=\dfrac{1}{8}\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{2x^2+2y^2-2x\sqrt{x^2+y^2}}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}-x\right)}=\dfrac{1}{4}\Rightarrow\dfrac{1}{\sqrt{x^2+y^2}}=\dfrac{1}{4}\)
\(\Rightarrow x^2+y^2=16\)
\(\Rightarrow\) Tập hợp \(z_1;z_2\) là đường tròn tâm O bán kính \(R=4\)
Gọi M, N lần lượt là điểm biểu diễn \(z_1;z_2\), do \(\left|z_1-z_2\right|=2\Rightarrow MN=2\)
Gọi \(P\left(0;5\right)\) và Q là trung điểm MN
\(\Rightarrow P=MP^2-NP^2=\overrightarrow{MP}^2-\overrightarrow{NP}^2=\left(\overrightarrow{MP}-\overrightarrow{NP}\right)\left(\overrightarrow{MP}+\overrightarrow{NP}\right)\)
\(=2\overrightarrow{MN}.\overrightarrow{PQ}=2\overrightarrow{MN}\left(\overrightarrow{PO}+\overrightarrow{OQ}\right)=2\overrightarrow{MN}.\overrightarrow{PO}=2MN.PO.cos\alpha\)
Trong đó \(\alpha\) là góc giữa \(MN;PO\)
Do MN, PO có độ dài cố định \(\Rightarrow P_{max}\) khi \(cos\alpha_{max}\Rightarrow\alpha=0^0\Rightarrow MN||PO\)
Mà MN=2 \(\Rightarrow M\left(\sqrt{15};-1\right);N\left(\sqrt{15};1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PM}=\left(\sqrt{15};-6\right)\\\overrightarrow{PN}=\left(\sqrt{15};-4\right)\end{matrix}\right.\)
\(\Rightarrow P_{max}=PM^2-PN^2=15+36-\left(15+16\right)=20\)
Lời giải:
Đặt \(z=a+bi(a,b\in\mathbb{R})\)
Từ \(z\overline{z}=1\Rightarrow a^2+b^2=1\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(O(0;0)\) bán kính \(R=1\)
Lại có:
\(|z+\sqrt{3}+i|=m(m\geq 0)\)
\(\Leftrightarrow |(a+\sqrt{3})+i(b+1)|=m\)
\(\Leftrightarrow (a+\sqrt{3})^2+(b+1)^2=m^2\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(I(-\sqrt{3}; -1)\) bán kính \(R'=m\)
Để số phức $z$ tồn tại duy nhất thì \((O); (I) \) phải tiếp xúc trong hoặc tiếp xúc ngoài.
Nếu \((O); (I)\) tiếp xúc ngoài:
\(\Rightarrow OI=R+R'\Leftrightarrow 2=1+m\Leftrightarrow m=1\)
Nếu \((O),(I)\) tiếp xúc trong.
TH1: \((O)\) nằm trong $(I)$
\(OI+R=R'\Leftrightarrow 2+1=m\Leftrightarrow m=3\)
TH2: \((I)\) nằm trong $(O)$
\(OI+R'=R\Leftrightarrow 2+m=1\Leftrightarrow m=-1\) (loại vì \(m\geq 0\) )
Do đó \(S=\left\{1;3\right\}\) hay số phần tử của S là 2.
ĐÁP ÁN: D