K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Lời giải:

Đặt \(z=a+bi(a,b\in\mathbb{R})\)

Từ \(z\overline{z}=1\Rightarrow a^2+b^2=1\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(O(0;0)\) bán kính \(R=1\)

Lại có:

\(|z+\sqrt{3}+i|=m(m\geq 0)\)

\(\Leftrightarrow |(a+\sqrt{3})+i(b+1)|=m\)

\(\Leftrightarrow (a+\sqrt{3})^2+(b+1)^2=m^2\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(I(-\sqrt{3}; -1)\) bán kính \(R'=m\)

Để số phức $z$ tồn tại duy nhất thì \((O); (I) \) phải tiếp xúc trong hoặc tiếp xúc ngoài.

Nếu \((O); (I)\) tiếp xúc ngoài:

\(\Rightarrow OI=R+R'\Leftrightarrow 2=1+m\Leftrightarrow m=1\)

Nếu \((O),(I)\) tiếp xúc trong.

TH1: \((O)\) nằm trong $(I)$

\(OI+R=R'\Leftrightarrow 2+1=m\Leftrightarrow m=3\)

TH2: \((I)\) nằm trong $(O)$

\(OI+R'=R\Leftrightarrow 2+m=1\Leftrightarrow m=-1\) (loại vì \(m\geq 0\) )

Do đó \(S=\left\{1;3\right\}\) hay số phần tử của S là 2.

20 tháng 3 2018

Thầy/ cô ơi, đề bài có S thì đó nghĩa là đường tròn ạ?