K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

44:

Xét ΔCAB và ΔCDB có

CA=CD

AB=DB

CB chung

Do đó:ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}=90^0\)

=>CD là tiếp tuyến của (B)

18 tháng 12 2021

Câu 44: C

Câu 45: C

26 tháng 10 2023

e: \(\left(a\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\cdot\sqrt{ab}\)

\(=a\cdot\sqrt{\dfrac{a}{b}\cdot\sqrt{ab}+2ab}+b\cdot\sqrt{\dfrac{a}{b}\cdot ab}\)

\(=a\cdot\sqrt{\dfrac{a\sqrt{ab}+2ab^2}{b}}+b\cdot a\)

\(=a\left(\sqrt{\dfrac{a\sqrt{ab}+2ab^2}{b}}+b\right)\)

\(=a\left(\dfrac{\sqrt{ab\sqrt{ab}+2ab^3}+b^2}{b}\right)\)

16 tháng 7 2021

b) Từ B kẻ đường vuông góc với BC cắt AC tại E

tam giác BEC vuông tại B có \(AB=AC\Rightarrow A\) là trung điểm CE

Vì tam giác ABC cân tại A có AH là đường cao \(\Rightarrow H\) là trung điểm BC

\(\Rightarrow AH\) là đường trung bình tam giác BEC 

\(\Rightarrow AH=\dfrac{1}{2}BE\Rightarrow2AH=BE\Rightarrow4AH^2=BE^2\)

tam giác BEC vuông tại B có BK là đường cao \(\Rightarrow\dfrac{1}{BE^2}+\dfrac{1}{BC^2}=\dfrac{1}{BK^2}\)

\(\Rightarrow\dfrac{1}{4AH^2}+\dfrac{1}{BC^2}=\dfrac{1}{BK^2}\)

undefined

16 tháng 7 2021

a)Ta có: \(AB^2+BC^2+AC^2=AC^2+\left(BD^2+CD^2\right)+\left(AD^2+CD^2\right)\)

\(=\left(BD^2+CD^2\right)+2\left(AD^2+CD^2\right)=BD^2+2AD^2+3CD^2\)

 

17 tháng 12 2021

a: BH=3,6cm

a: góc BDC=180-60=120 độ

góc BOC=2*góc BAC=120 độ

góc BAD=góc CAD=60/2=30 độ

=>góc BOD=góc COD=60 độ

góc BOD=1/2*góc BOC

=>OD là phân giác của góc BOC

Xét ΔOBD có OB=OD và góc BOD=60 độ

nên ΔOBD đều

=>góc OBD=60 độ

Xét ΔOCD có OD=OC và góc DOC=60 độ

=>ΔOCD đều

=>góc OCD=60 độ

Xét tứ giác BOCD có

góc BOC=góc BDC

góc OBD=góc OCD

OB=OC

=>BOCD là hình thoi

b:

góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2*120=60 độ

=>góc BIC=120 độ

góc BOC=góc BIC=120 độ

=>BOIC nội tiếp

NV
6 tháng 8 2021

Từ D kẻ đường vuông góc DK (K thuộc AB)  \(\Rightarrow CDKH\) là hình chữ nhật

\(\Rightarrow\left\{{}\begin{matrix}HK=CD=3,5\left(m\right)\\CH=DK=5\left(m\right)\end{matrix}\right.\)

Ta có:\(\widehat{KDA}=135^0-90^0=45^0\)  

Trong tam giác vuông BCH:

\(cos\widehat{BCH}=\dfrac{CH}{BC}\Rightarrow BC=\dfrac{CH}{cos\widehat{BCH}}=\dfrac{5}{cos30^0}=\dfrac{10\sqrt{3}}{3}\left(m\right)\)

\(\Rightarrow BH=\sqrt{BC^2-CH^2}=\dfrac{5\sqrt{3}}{3}\left(m\right)\)

Trong tam giác vuông ADK:

\(\widehat{KAD}=90^0-\widehat{KDA}=45^0\Rightarrow\widehat{KAD}=\widehat{KDA}\Rightarrow\Delta ADK\) vuông cân tại K

\(\Rightarrow AK=DK=5\left(m\right)\)

\(\Rightarrow AD=\sqrt{AK^2+DK^2}=5\sqrt{2}\left(m\right)\)

\(AB=BH+HK+KA=\dfrac{51+10\sqrt{3}}{6}\left(m\right)\)

Chu vi: \(AB+CD+BC+AD\approx27,7\left(m\right)\)

Diện tích: \(S=\dfrac{1}{2}\left(AB+CD\right).CH\approx37,2\left(m^2\right)\)

NV
6 tháng 8 2021

undefined

NV
28 tháng 7 2021

\(=\left(\dfrac{\sqrt{5}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}+\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}\right):\sqrt{\dfrac{5}{2}}\)

\(=\left(\sqrt{5}+\sqrt{6}-\sqrt{6}+\sqrt{5}\right):\dfrac{\sqrt{5}}{\sqrt{2}}\)

\(=2\sqrt{5}.\dfrac{\sqrt{2}}{\sqrt{5}}=2\sqrt{2}\)

a) Ta có: \(\left(\dfrac{\sqrt{15}-\sqrt{20}}{\sqrt{3}-2}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}-\dfrac{1}{\sqrt{6}+\sqrt{5}}\right):\sqrt{\dfrac{5}{2}}\)

\(=\left(\sqrt{5}+\sqrt{6}-\sqrt{6}+\sqrt{5}\right):\dfrac{\sqrt{10}}{2}\)

\(=2\sqrt{5}\cdot\dfrac{2}{\sqrt{10}}=2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

c.

\(\left\{\begin{matrix} 9x-6y=4\\ 15x-10y=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{6y+4}{9}\\ 15x-10y=7\end{matrix}\right.\)

\(\Rightarrow 15.\frac{6y+4}{9}-10y=7\)

\(\Leftrightarrow \frac{5}{3}(6y+4)-10y=7\Leftrightarrow \frac{20}{3}=7\) (vô lý)

Do đó hpt vô nghiệm.

d.

\(\left\{\begin{matrix} 4x+5y=3\\ x-3y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4x+5y=3\\ x=3y+5\end{matrix}\right.\Rightarrow 4(3y+5)+5y=3\)

\(\Leftrightarrow 17y+20=3\Leftrightarrow 17y=-17\Leftrightarrow y=-1\)

\(x=3y+5=-3+5=2\)

Vậy HPT có nghiệm $(x,y)=(2,-1)$

Các câu còn lại bạn làm theo pp tương tự.

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

1.

HPT \(\Leftrightarrow \left\{\begin{matrix} 5x-y=4\\ 3x-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 5x-y=4\\ y=3x-5\end{matrix}\right.\)

\(\Rightarrow 5x-(3x-5)=4\Leftrightarrow 2x+5=4\Leftrightarrow 2x=-1\Leftrightarrow x=\frac{-1}{2}\)

\(y=3x-5=\frac{-3}{2}-5=\frac{-13}{2}\)

Vậy HPT có nghiệm $(x,y)=(\frac{-1}{2}, \frac{-13}{2})$