K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

chụp rõ hơn được k bạn

12 tháng 5 2021

đề dưới 

1b

2c

3d

4a

5a

6b

7a

8d

9b

10b

 

16 tháng 11 2021

Câu 1.

Tờ vé số có dạng \(\overline{a_1a_2a_3a_4a_5a_6}\in A=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)

\(;a_i\ne a_j\)

Chọn \(a_1\ne0\) nên \(a_1\) có 9 cách chọn.

5 số còn lại là chỉnh hợp chập 5 của 8 số còn lại \(\in A\backslash\left\{a_1\right\}\)

\(\Rightarrow\)Có \(A_8^5\) cách.

Vậy có tất cả \(A_8^5\cdot9=60480\) vé số.

 

 

16 tháng 11 2021

c

NV
4 tháng 8 2021

Đây là 1 lời giải sai em

Đơn giản vì phương trình gốc không thể giải được

5 tháng 8 2021

Em cảm ơn ạ 

NV
2 tháng 12 2021

Do d' là ảnh của d qua phép tịnh tiến nên d' cùng phương d

\(\Rightarrow\) Phương trình d' có dạng: \(2x-3y+c=0\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow\left\{{}\begin{matrix}x'=0+1=1\\y'=1+\left(-2\right)=-1\end{matrix}\right.\) \(\Rightarrow A'\left(1;-1\right)\)

Thay tọa độ A' vào pt d':

\(2.1-3.\left(-1\right)+c=0\Rightarrow c=-5\)

Hay pt d' có dạng: \(2x-3y-5=0\)

NV
13 tháng 6 2021

Tất cả k dưới đây đều là \(k\in Z\)

6.

\(\Leftrightarrow\sqrt{3}cot\left(3x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow cot\left(3x-\dfrac{\pi}{3}\right)=\dfrac{1}{\sqrt{3}}\)

\(\Leftrightarrow cot\left(3x-\dfrac{\pi}{3}\right)=cot\left(\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow3x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow3x=\dfrac{2\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\) 

NV
13 tháng 6 2021

7.

\(\Leftrightarrow\sqrt{3}tan\left(3x-15^0\right)=-1\)

\(\Leftrightarrow tan\left(3x-15^0\right)=-\dfrac{1}{\sqrt{3}}\)

\(\Leftrightarrow tan\left(3x-15^0\right)=tan\left(-30^0\right)\)

\(\Leftrightarrow3x-15^0=-30^0+k180^0\)

\(\Leftrightarrow3x=-15^0+k180^0\)

\(\Leftrightarrow x=-3^0+k60^0\)

NV
23 tháng 10 2021

a.

Đặt \(sinx+cosx=t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(\Rightarrow1+2sinx.cosx=t^2\Rightarrow2sinx.cosx=t^2-1\)

Phương trình trở thành:

\(3t=2\left(t^2-1\right)\)

\(\Leftrightarrow2t^2-3t-2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2>\sqrt{2}\left(loại\right)\\t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow sinx+cosx=-\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\\x+\dfrac{\pi}{4}=\pi-arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\\x=\dfrac{3\pi}{4}-arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\end{matrix}\right.\)

NV
23 tháng 10 2021

b.

ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

\(1+\dfrac{sinx}{cosx}=2\sqrt{2}sinx\)

\(\Rightarrow sinx+cosx=2\sqrt{2}sinx.cosx\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}sin2x\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{4}+k2\pi\\2x=\dfrac{3\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{4}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k2\pi}{3}\)