K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

a,

c, Gọi \(\left(D_3\right):y=ax+b\) là đt cần tìm

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2;b\ne0\\3x+3=ax+b,\forall x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-2\end{matrix}\right.\)

Vậy \(\left(D_3\right):y=-2x-2\)

11 tháng 1 2021

Gọi giao điểm AE và BP là F;

Gọi giao điểm QD và AB là H; 

Gọi kéo dài AD cắt BF tại P'     

Dễ cm M là trung điểm AC

Xét \(\Delta OMC\) có QD//CM\(\Rightarrow\dfrac{OD}{OM}=\dfrac{QD}{CM}\)(hệ quả tales)

Tương tự với \(\Delta OAM\) có \(\dfrac{OD}{OM}=\dfrac{DH}{AM}\) 

\(\Rightarrow\dfrac{QD}{CM}=\dfrac{DH}{AM}\)

Mà CM=AM (vì M là tđ AC)

\(\Rightarrow QD=DH\)

Dễ cm P là trung điểm BF

Xét \(\Delta ABP'\) có DH//BP'

\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{AD}{AP'}\)(tales)

Tương tự với \(\Delta AFP'\) có \(\dfrac{QD}{FP'}=\dfrac{AD}{AP'}\)

\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{QD}{FP'}\)

Mà DH=QD (cmt) 

\(\Rightarrow BP'=FP'\)

\(\Rightarrow\)P' là trung điểm BF

\(\Rightarrow P\equiv P'\)

\(\Rightarrow A,D,P\) thẳng hàng

c: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=64-32=32\)

hay \(AB=4\sqrt{2}\left(cm\right)\)

Xét ΔABC vuông tại A có AB=AC

nên ΔBAC vuông cân tại A

Suy ra: \(\widehat{B}=\widehat{C}=45^0\)

22 tháng 10 2021

\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)

Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)

\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)

Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)

22 tháng 10 2021

a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)

c: OM vuông góc BC, BD vuông góc BC

=>OM//BD

=>góc BDO=góc DOM

ΔDBO=ΔDFO

=>góc BDO=góc ODM

=>góc ODM=góc DOM

=>ΔDMO cân tại M

=>MO=MD

OM//BD

=>AD/AM=BD/OM

màAD/AM=(AM+DM)/AM=1+DM/AM

và OM=DN

nênBD/DM-DM/AM=1

a: góc OBA+góc OCA=90+90=180 độ

=>ABOC nội tiếp

b: góc OIE=góc OCE=90 độ

=>OICE là tứ giác nội tiếp

=>góc OEI=góc OCI

=>góc OEI=góc OCB

OBAC nội tiếp

=>góc OCB=góc OAB

=>góc OEI=góc OAB

=>góc OEI=góc OAI

=>OIAE nội tiếp

18 tháng 12 2022

b: Tọa độ giao là:

5x-4=2x+2 và y=2x+2

=>x=2 và y=6

c: Vì (d2)//d nên (d2): y=2x+b

Thay x=1 và y=3 vào (d2), ta được:

b+2=3

=>b=1

DD
28 tháng 5 2022

Câu 10: 

Gọi \(H\) là giao điểm của \(MO\) và \(AB\).

Xét tam giác \(MAO\) vuông tại \(A\) đường cao \(AH\)

\(\dfrac{1}{AH^2}=\dfrac{1}{MA^2}+\dfrac{1}{AO^2}\Leftrightarrow\dfrac{1}{\left(\dfrac{R\sqrt{2}}{2}\right)^2}=\dfrac{1}{MA^2}+\dfrac{1}{R^2}\Leftrightarrow MA=R\).

\(S_{MAOB}=S_{MAO}+S_{MBO}\)

\(=\dfrac{1}{2}.AO.MA+\dfrac{1}{2}.OB.MB\)

\(=\dfrac{1}{2}.R.R+\dfrac{1}{2}.R.R=R^2\)

Chọn C. 

29 tháng 5 2022

Đài ơi, giải giúp cho Sarah đi, tớ không có viết và giờ vào giường rồi , good nigh

22 tháng 11 2021

lỗi gửi ảnh, giờ ok